mirror of https://github.com/hpcaitech/ColossalAI
136 lines
3.6 KiB
Python
136 lines
3.6 KiB
Python
![]() |
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
from colossalai.engine import AMP_TYPE
|
||
|
|
||
|
BATCH_SIZE = 512
|
||
|
IMG_SIZE = 32
|
||
|
PATCH_SIZE = 4
|
||
|
DIM = 512
|
||
|
NUM_ATTENTION_HEADS = 8
|
||
|
SUMMA_DIM = 2
|
||
|
NUM_CLASSES = 10
|
||
|
DEPTH = 6
|
||
|
|
||
|
train_data = dict(
|
||
|
dataset=dict(type='CIFAR10Dataset',
|
||
|
root=Path(os.environ['DATA']),
|
||
|
transform_pipeline=[
|
||
|
dict(type='Resize', size=IMG_SIZE),
|
||
|
dict(type='RandomCrop', size=IMG_SIZE, padding=4),
|
||
|
dict(type='RandomHorizontalFlip'),
|
||
|
dict(type='ToTensor'),
|
||
|
dict(type='Normalize',
|
||
|
mean=[0.4914, 0.4822, 0.4465],
|
||
|
std=[0.2023, 0.1994, 0.2010]),
|
||
|
]),
|
||
|
dataloader=dict(
|
||
|
batch_size=BATCH_SIZE,
|
||
|
pin_memory=True,
|
||
|
# num_workers=1,
|
||
|
shuffle=True,
|
||
|
))
|
||
|
|
||
|
test_data = dict(
|
||
|
dataset=dict(type='CIFAR10Dataset',
|
||
|
root=Path(os.environ['DATA']),
|
||
|
train=False,
|
||
|
transform_pipeline=[
|
||
|
dict(type='Resize', size=IMG_SIZE),
|
||
|
dict(type='ToTensor'),
|
||
|
dict(type='Normalize',
|
||
|
mean=[0.4914, 0.4822, 0.4465],
|
||
|
std=[0.2023, 0.1994, 0.2010]),
|
||
|
]),
|
||
|
dataloader=dict(
|
||
|
batch_size=400,
|
||
|
pin_memory=True,
|
||
|
# num_workers=1,
|
||
|
))
|
||
|
|
||
|
optimizer = dict(type='Adam', lr=0.001, weight_decay=0)
|
||
|
|
||
|
loss = dict(type='CrossEntropyLoss2D', )
|
||
|
|
||
|
# model = dict(
|
||
|
# type='VanillaResNet',
|
||
|
# block_type='ResNetBasicBlock',
|
||
|
# layers=[2, 2, 2, 2],
|
||
|
# num_cls=10
|
||
|
# )
|
||
|
|
||
|
model = dict(
|
||
|
type='VisionTransformerFromConfig',
|
||
|
tensor_splitting_cfg=dict(type='ViTInputSplitter2D', ),
|
||
|
embedding_cfg=dict(
|
||
|
type='ViTPatchEmbedding2D',
|
||
|
img_size=IMG_SIZE,
|
||
|
patch_size=PATCH_SIZE,
|
||
|
embed_dim=DIM,
|
||
|
),
|
||
|
token_fusion_cfg=dict(type='ViTTokenFuser2D',
|
||
|
img_size=IMG_SIZE,
|
||
|
patch_size=PATCH_SIZE,
|
||
|
embed_dim=DIM,
|
||
|
drop_rate=0.1),
|
||
|
norm_cfg=dict(
|
||
|
type='LayerNorm2D',
|
||
|
normalized_shape=DIM,
|
||
|
eps=1e-6,
|
||
|
),
|
||
|
block_cfg=dict(
|
||
|
type='ViTBlock',
|
||
|
attention_cfg=dict(
|
||
|
type='ViTSelfAttention2D',
|
||
|
hidden_size=DIM,
|
||
|
num_attention_heads=NUM_ATTENTION_HEADS,
|
||
|
attention_dropout_prob=0.,
|
||
|
hidden_dropout_prob=0.1,
|
||
|
),
|
||
|
droppath_cfg=dict(type='VanillaViTDropPath', ),
|
||
|
mlp_cfg=dict(type='ViTMLP2D',
|
||
|
in_features=DIM,
|
||
|
dropout_prob=0.1,
|
||
|
mlp_ratio=1),
|
||
|
norm_cfg=dict(
|
||
|
type='LayerNorm2D',
|
||
|
normalized_shape=DIM,
|
||
|
eps=1e-6,
|
||
|
),
|
||
|
),
|
||
|
head_cfg=dict(
|
||
|
type='ViTHead2D',
|
||
|
hidden_size=DIM,
|
||
|
num_classes=NUM_CLASSES,
|
||
|
),
|
||
|
embed_dim=DIM,
|
||
|
depth=DEPTH,
|
||
|
drop_path_rate=0.,
|
||
|
)
|
||
|
|
||
|
hooks = [
|
||
|
dict(type='LogMetricByEpochHook'),
|
||
|
dict(type='LogTimingByEpochHook'),
|
||
|
dict(type='Accuracy2DHook'),
|
||
|
dict(type='LossHook'),
|
||
|
dict(type='TensorboardHook', log_dir='./tfb_logs'),
|
||
|
dict(type='SaveCheckpointHook', interval=5, checkpoint_dir='./ckpt'),
|
||
|
# dict(type='LoadCheckpointHook', epoch=20, checkpoint_dir='./ckpt')
|
||
|
]
|
||
|
|
||
|
parallel = dict(
|
||
|
pipeline=dict(size=1),
|
||
|
tensor=dict(size=4, mode='2d'),
|
||
|
)
|
||
|
|
||
|
fp16 = dict(mode=AMP_TYPE.PARALLEL, initial_scale=2 ** 8)
|
||
|
|
||
|
lr_scheduler = dict(type='LinearWarmupLR', warmup_epochs=5)
|
||
|
|
||
|
schedule = dict(num_microbatches=1)
|
||
|
|
||
|
num_epochs = 60
|
||
|
num_microbatches = 1
|
||
|
|
||
|
logging = dict(root_path='./logs')
|