ColossalAI/examples/images/vit/data.py

39 lines
1.2 KiB
Python

import torch
from datasets import load_dataset
from torch.utils.data import Dataset
class BeansDataset(Dataset):
def __init__(self, image_processor, tp_size=1, split='train'):
super().__init__()
self.image_processor = image_processor
self.ds = load_dataset('beans')[split]
self.label_names = self.ds.features['labels'].names
while len(self.label_names) % tp_size != 0:
# ensure that the number of labels is multiple of tp_size
self.label_names.append(f"pad_label_{len(self.label_names)}")
self.num_labels = len(self.label_names)
self.inputs = []
for example in self.ds:
self.inputs.append(self.process_example(example))
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return self.inputs[idx]
def process_example(self, example):
input = self.image_processor(example['image'], return_tensors='pt')
input['labels'] = example['labels']
return input
def beans_collator(batch):
return {
'pixel_values': torch.cat([data['pixel_values'] for data in batch], dim=0),
'labels': torch.tensor([data['labels'] for data in batch], dtype=torch.int64)
}