import torch from datasets import load_dataset from torch.utils.data import Dataset class BeansDataset(Dataset): def __init__(self, image_processor, tp_size=1, split='train'): super().__init__() self.image_processor = image_processor self.ds = load_dataset('beans')[split] self.label_names = self.ds.features['labels'].names while len(self.label_names) % tp_size != 0: # ensure that the number of labels is multiple of tp_size self.label_names.append(f"pad_label_{len(self.label_names)}") self.num_labels = len(self.label_names) self.inputs = [] for example in self.ds: self.inputs.append(self.process_example(example)) def __len__(self): return len(self.inputs) def __getitem__(self, idx): return self.inputs[idx] def process_example(self, example): input = self.image_processor(example['image'], return_tensors='pt') input['labels'] = example['labels'] return input def beans_collator(batch): return { 'pixel_values': torch.cat([data['pixel_values'] for data in batch], dim=0), 'labels': torch.tensor([data['labels'] for data in batch], dtype=torch.int64) }