mirror of https://github.com/hpcaitech/ColossalAI
1644 lines
67 KiB
Python
1644 lines
67 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch DeBERTa-v2 model."""
|
|
|
|
import math
|
|
from collections.abc import Sequence
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
|
from transformers import FillMaskPipeline, T5ForConditionalGeneration, T5Tokenizer
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutput,
|
|
MaskedLMOutput,
|
|
MultipleChoiceModelOutput,
|
|
QuestionAnsweringModelOutput,
|
|
SequenceClassifierOutput,
|
|
TokenClassifierOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
|
|
from transformers.pytorch_utils import softmax_backward_data
|
|
from transformers.utils import (
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
logging,
|
|
)
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "DebertaV2Config"
|
|
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
|
|
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
|
|
|
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"microsoft/deberta-v2-xlarge",
|
|
"microsoft/deberta-v2-xxlarge",
|
|
"microsoft/deberta-v2-xlarge-mnli",
|
|
"microsoft/deberta-v2-xxlarge-mnli",
|
|
]
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
|
|
class ContextPooler(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
|
self.dropout = StableDropout(config.pooler_dropout)
|
|
self.config = config
|
|
|
|
def forward(self, hidden_states):
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
|
|
context_token = hidden_states[:, 0]
|
|
context_token = self.dropout(context_token)
|
|
pooled_output = self.dense(context_token)
|
|
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
|
return pooled_output
|
|
|
|
@property
|
|
def output_dim(self):
|
|
return self.config.hidden_size
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
|
|
class XSoftmax(torch.autograd.Function):
|
|
"""
|
|
Masked Softmax which is optimized for saving memory
|
|
|
|
Args:
|
|
input (`torch.tensor`): The input tensor that will apply softmax.
|
|
mask (`torch.IntTensor`):
|
|
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
|
dim (int): The dimension that will apply softmax
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
|
|
|
|
>>> # Make a tensor
|
|
>>> x = torch.randn([4, 20, 100])
|
|
|
|
>>> # Create a mask
|
|
>>> mask = (x > 0).int()
|
|
|
|
>>> # Specify the dimension to apply softmax
|
|
>>> dim = -1
|
|
|
|
>>> y = XSoftmax.apply(x, mask, dim)
|
|
```"""
|
|
|
|
@staticmethod
|
|
def forward(self, input, mask, dim):
|
|
self.dim = dim
|
|
rmask = ~(mask.to(torch.bool))
|
|
|
|
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
|
|
output = torch.softmax(output, self.dim)
|
|
output.masked_fill_(rmask, 0)
|
|
self.save_for_backward(output)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(self, grad_output):
|
|
(output,) = self.saved_tensors
|
|
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
|
return inputGrad, None, None
|
|
|
|
@staticmethod
|
|
def symbolic(g, self, mask, dim):
|
|
import torch.onnx.symbolic_helper as sym_help
|
|
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
|
|
|
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
|
|
r_mask = g.op(
|
|
"Cast",
|
|
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
|
|
to_i=sym_help.cast_pytorch_to_onnx["Byte"],
|
|
)
|
|
output = masked_fill(g, self, r_mask,
|
|
g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)))
|
|
output = softmax(g, output, dim)
|
|
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.uint8)))
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
|
|
class DropoutContext(object):
|
|
|
|
def __init__(self):
|
|
self.dropout = 0
|
|
self.mask = None
|
|
self.scale = 1
|
|
self.reuse_mask = True
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.get_mask
|
|
def get_mask(input, local_context):
|
|
if not isinstance(local_context, DropoutContext):
|
|
dropout = local_context
|
|
mask = None
|
|
else:
|
|
dropout = local_context.dropout
|
|
dropout *= local_context.scale
|
|
mask = local_context.mask if local_context.reuse_mask else None
|
|
|
|
if dropout > 0 and mask is None:
|
|
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
|
|
|
|
if isinstance(local_context, DropoutContext):
|
|
if local_context.mask is None:
|
|
local_context.mask = mask
|
|
|
|
return mask, dropout
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.XDropout
|
|
class XDropout(torch.autograd.Function):
|
|
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, local_ctx):
|
|
mask, dropout = get_mask(input, local_ctx)
|
|
ctx.scale = 1.0 / (1 - dropout)
|
|
if dropout > 0:
|
|
ctx.save_for_backward(mask)
|
|
return input.masked_fill(mask, 0) * ctx.scale
|
|
else:
|
|
return input
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
if ctx.scale > 1:
|
|
(mask,) = ctx.saved_tensors
|
|
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
|
else:
|
|
return grad_output, None
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
|
|
class StableDropout(nn.Module):
|
|
"""
|
|
Optimized dropout module for stabilizing the training
|
|
|
|
Args:
|
|
drop_prob (float): the dropout probabilities
|
|
"""
|
|
|
|
def __init__(self, drop_prob):
|
|
super().__init__()
|
|
self.drop_prob = drop_prob
|
|
self.count = 0
|
|
self.context_stack = None
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Call the module
|
|
|
|
Args:
|
|
x (`torch.tensor`): The input tensor to apply dropout
|
|
"""
|
|
if self.training and self.drop_prob > 0:
|
|
return XDropout.apply(x, self.get_context())
|
|
return x
|
|
|
|
def clear_context(self):
|
|
self.count = 0
|
|
self.context_stack = None
|
|
|
|
def init_context(self, reuse_mask=True, scale=1):
|
|
if self.context_stack is None:
|
|
self.context_stack = []
|
|
self.count = 0
|
|
for c in self.context_stack:
|
|
c.reuse_mask = reuse_mask
|
|
c.scale = scale
|
|
|
|
def get_context(self):
|
|
if self.context_stack is not None:
|
|
if self.count >= len(self.context_stack):
|
|
self.context_stack.append(DropoutContext())
|
|
ctx = self.context_stack[self.count]
|
|
ctx.dropout = self.drop_prob
|
|
self.count += 1
|
|
return ctx
|
|
else:
|
|
return self.drop_prob
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
|
|
class DebertaV2SelfOutput(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
|
self.dropout = StableDropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
|
|
class DebertaV2Attention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.self = DisentangledSelfAttention(config)
|
|
self.output = DebertaV2SelfOutput(config)
|
|
self.config = config
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=False,
|
|
query_states=None,
|
|
relative_pos=None,
|
|
rel_embeddings=None,
|
|
):
|
|
self_output = self.self(
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions,
|
|
query_states=query_states,
|
|
relative_pos=relative_pos,
|
|
rel_embeddings=rel_embeddings,
|
|
)
|
|
if output_attentions:
|
|
self_output, att_matrix = self_output
|
|
if query_states is None:
|
|
query_states = hidden_states
|
|
attention_output = self.output(self_output, query_states)
|
|
|
|
if output_attentions:
|
|
return (attention_output, att_matrix)
|
|
else:
|
|
return attention_output
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
|
|
class DebertaV2Intermediate(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
|
|
class DebertaV2Output(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
|
self.dropout = StableDropout(config.hidden_dropout_prob)
|
|
self.config = config
|
|
|
|
def forward(self, hidden_states, input_tensor):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
|
|
class DebertaV2Layer(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.attention = DebertaV2Attention(config)
|
|
self.intermediate = DebertaV2Intermediate(config)
|
|
self.output = DebertaV2Output(config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask,
|
|
query_states=None,
|
|
relative_pos=None,
|
|
rel_embeddings=None,
|
|
output_attentions=False,
|
|
):
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=output_attentions,
|
|
query_states=query_states,
|
|
relative_pos=relative_pos,
|
|
rel_embeddings=rel_embeddings,
|
|
)
|
|
if output_attentions:
|
|
attention_output, att_matrix = attention_output
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
if output_attentions:
|
|
return (layer_output, att_matrix)
|
|
else:
|
|
return layer_output
|
|
|
|
|
|
class ConvLayer(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
kernel_size = getattr(config, "conv_kernel_size", 3)
|
|
groups = getattr(config, "conv_groups", 1)
|
|
self.conv_act = getattr(config, "conv_act", "tanh")
|
|
self.conv = nn.Conv1d(config.hidden_size,
|
|
config.hidden_size,
|
|
kernel_size,
|
|
padding=(kernel_size - 1) // 2,
|
|
groups=groups)
|
|
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
|
self.dropout = StableDropout(config.hidden_dropout_prob)
|
|
self.config = config
|
|
|
|
def forward(self, hidden_states, residual_states, input_mask):
|
|
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
|
|
rmask = (1 - input_mask).bool()
|
|
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
|
out = ACT2FN[self.conv_act](self.dropout(out))
|
|
|
|
layer_norm_input = residual_states + out
|
|
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
|
|
|
|
if input_mask is None:
|
|
output_states = output
|
|
else:
|
|
if input_mask.dim() != layer_norm_input.dim():
|
|
if input_mask.dim() == 4:
|
|
input_mask = input_mask.squeeze(1).squeeze(1)
|
|
input_mask = input_mask.unsqueeze(2)
|
|
|
|
input_mask = input_mask.to(output.dtype)
|
|
output_states = output * input_mask
|
|
|
|
return output_states
|
|
|
|
|
|
class DebertaV2Encoder(nn.Module):
|
|
"""Modified BertEncoder with relative position bias support"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
|
|
self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
|
|
self.relative_attention = getattr(config, "relative_attention", False)
|
|
|
|
if self.relative_attention:
|
|
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
|
if self.max_relative_positions < 1:
|
|
self.max_relative_positions = config.max_position_embeddings
|
|
|
|
self.position_buckets = getattr(config, "position_buckets", -1)
|
|
pos_ebd_size = self.max_relative_positions * 2
|
|
|
|
if self.position_buckets > 0:
|
|
pos_ebd_size = self.position_buckets * 2
|
|
|
|
# rel = nn.Parameter(torch.empty((pos_ebd_size, config.hidden_size)))
|
|
# self.rel_embeddings = nn.init.normal_(rel, mean=0.0, std=config.initializer_range)
|
|
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
|
|
|
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
|
|
|
|
if "layer_norm" in self.norm_rel_ebd:
|
|
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
|
|
|
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
|
|
self.gradient_checkpointing = False
|
|
|
|
def get_rel_embedding(self):
|
|
att_span = self.position_buckets
|
|
rel_index = torch.arange(0, att_span * 2).long().to(self.rel_embeddings.weight.device)
|
|
rel_embeddings = self.rel_embeddings(rel_index)
|
|
# rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
|
# rel_embeddings = self.rel_embeddings if self.relative_attention else None
|
|
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
|
|
rel_embeddings = self.LayerNorm(rel_embeddings)
|
|
return rel_embeddings
|
|
|
|
def get_attention_mask(self, attention_mask):
|
|
if attention_mask.dim() <= 2:
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
|
attention_mask = attention_mask.byte()
|
|
elif attention_mask.dim() == 3:
|
|
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
return attention_mask
|
|
|
|
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
|
if self.relative_attention and relative_pos is None:
|
|
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
|
relative_pos = build_relative_position(q,
|
|
hidden_states.size(-2),
|
|
bucket_size=self.position_buckets,
|
|
max_position=self.max_relative_positions)
|
|
return relative_pos
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask,
|
|
output_hidden_states=True,
|
|
output_attentions=False,
|
|
query_states=None,
|
|
relative_pos=None,
|
|
return_dict=True,
|
|
):
|
|
if attention_mask.dim() <= 2:
|
|
input_mask = attention_mask
|
|
else:
|
|
input_mask = (attention_mask.sum(-2) > 0).byte()
|
|
attention_mask = self.get_attention_mask(attention_mask)
|
|
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
if isinstance(hidden_states, Sequence):
|
|
next_kv = hidden_states[0]
|
|
else:
|
|
next_kv = hidden_states
|
|
rel_embeddings = self.get_rel_embedding()
|
|
output_states = next_kv
|
|
for i, layer_module in enumerate(self.layer):
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (output_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
return module(*inputs, output_attentions)
|
|
|
|
return custom_forward
|
|
|
|
output_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(layer_module),
|
|
next_kv,
|
|
attention_mask,
|
|
query_states,
|
|
relative_pos,
|
|
rel_embeddings,
|
|
)
|
|
else:
|
|
output_states = layer_module(
|
|
next_kv,
|
|
attention_mask,
|
|
query_states=query_states,
|
|
relative_pos=relative_pos,
|
|
rel_embeddings=rel_embeddings,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
if output_attentions:
|
|
output_states, att_m = output_states
|
|
|
|
if i == 0 and self.conv is not None:
|
|
output_states = self.conv(hidden_states, output_states, input_mask)
|
|
|
|
if query_states is not None:
|
|
query_states = output_states
|
|
if isinstance(hidden_states, Sequence):
|
|
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
|
else:
|
|
next_kv = output_states
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (att_m,)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (output_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(last_hidden_state=output_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_attentions)
|
|
|
|
|
|
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
|
sign = np.sign(relative_pos)
|
|
mid = bucket_size // 2
|
|
abs_pos = np.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos))
|
|
log_pos = np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1)) + mid
|
|
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
|
|
return bucket_pos
|
|
|
|
|
|
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
|
|
"""
|
|
Build relative position according to the query and key
|
|
|
|
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
|
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
|
P_k\\)
|
|
|
|
Args:
|
|
query_size (int): the length of query
|
|
key_size (int): the length of key
|
|
bucket_size (int): the size of position bucket
|
|
max_position (int): the maximum allowed absolute position
|
|
|
|
Return:
|
|
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
|
|
|
"""
|
|
q_ids = np.arange(0, query_size)
|
|
k_ids = np.arange(0, key_size)
|
|
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
|
|
if bucket_size > 0 and max_position > 0:
|
|
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
|
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
|
|
rel_pos_ids = rel_pos_ids[:query_size, :]
|
|
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
|
return rel_pos_ids
|
|
|
|
|
|
@torch.jit.script
|
|
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
|
|
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
|
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
|
|
|
|
|
@torch.jit.script
|
|
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
|
|
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
|
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
|
|
|
|
|
@torch.jit.script
|
|
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
|
|
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
|
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
|
|
|
|
|
class DisentangledSelfAttention(nn.Module):
|
|
"""
|
|
Disentangled self-attention module
|
|
|
|
Parameters:
|
|
config (`DebertaV2Config`):
|
|
A model config class instance with the configuration to build a new model. The schema is similar to
|
|
*BertConfig*, for more details, please refer [`DebertaV2Config`]
|
|
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
raise ValueError(f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
|
f"heads ({config.num_attention_heads})")
|
|
self.num_attention_heads = config.num_attention_heads
|
|
_attention_head_size = config.hidden_size // config.num_attention_heads
|
|
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
|
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
|
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
|
|
|
self.share_att_key = getattr(config, "share_att_key", False)
|
|
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
|
self.relative_attention = getattr(config, "relative_attention", False)
|
|
|
|
if self.relative_attention:
|
|
self.position_buckets = getattr(config, "position_buckets", -1)
|
|
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
|
if self.max_relative_positions < 1:
|
|
self.max_relative_positions = config.max_position_embeddings
|
|
self.pos_ebd_size = self.max_relative_positions
|
|
if self.position_buckets > 0:
|
|
self.pos_ebd_size = self.position_buckets
|
|
|
|
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
|
|
|
if not self.share_att_key:
|
|
if "c2p" in self.pos_att_type:
|
|
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
|
if "p2c" in self.pos_att_type:
|
|
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
|
# self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
|
|
|
def transpose_for_scores(self, x, attention_heads):
|
|
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
|
x = x.view(new_x_shape)
|
|
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=False,
|
|
query_states=None,
|
|
relative_pos=None,
|
|
rel_embeddings=None,
|
|
):
|
|
"""
|
|
Call the module
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`):
|
|
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
|
*Attention(Q,K,V)*
|
|
|
|
attention_mask (`torch.ByteTensor`):
|
|
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
|
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
|
th token.
|
|
|
|
output_attentions (`bool`, optional):
|
|
Whether return the attention matrix.
|
|
|
|
query_states (`torch.FloatTensor`, optional):
|
|
The *Q* state in *Attention(Q,K,V)*.
|
|
|
|
relative_pos (`torch.LongTensor`):
|
|
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
|
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
|
|
|
rel_embeddings (`torch.FloatTensor`):
|
|
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
|
\\text{max_relative_positions}\\), *hidden_size*].
|
|
|
|
|
|
"""
|
|
if query_states is None:
|
|
query_states = hidden_states
|
|
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
|
|
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
|
|
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
|
|
|
|
rel_att = None
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
scale_factor = 1
|
|
if "c2p" in self.pos_att_type:
|
|
scale_factor += 1
|
|
if "p2c" in self.pos_att_type:
|
|
scale_factor += 1
|
|
scale = math.sqrt(query_layer.size(-1) * scale_factor)
|
|
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
|
|
if self.relative_attention:
|
|
rel_embeddings = self.pos_dropout(rel_embeddings)
|
|
rel_att = self.disentangled_attention_bias(query_layer, key_layer, relative_pos, rel_embeddings,
|
|
scale_factor)
|
|
|
|
if rel_att is not None:
|
|
attention_scores = attention_scores + rel_att
|
|
attention_scores = attention_scores
|
|
attention_scores = attention_scores.view(-1, self.num_attention_heads, attention_scores.size(-2),
|
|
attention_scores.size(-1))
|
|
|
|
# bsz x height x length x dimension
|
|
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
|
attention_probs = self.dropout(attention_probs)
|
|
context_layer = torch.bmm(attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)),
|
|
value_layer)
|
|
context_layer = (context_layer.view(-1, self.num_attention_heads, context_layer.size(-2),
|
|
context_layer.size(-1)).permute(0, 2, 1, 3).contiguous())
|
|
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
|
context_layer = context_layer.view(new_context_layer_shape)
|
|
if output_attentions:
|
|
return (context_layer, attention_probs)
|
|
else:
|
|
return context_layer
|
|
|
|
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
|
if relative_pos is None:
|
|
q = query_layer.size(-2)
|
|
relative_pos = build_relative_position(q,
|
|
key_layer.size(-2),
|
|
bucket_size=self.position_buckets,
|
|
max_position=self.max_relative_positions)
|
|
if relative_pos.dim() == 2:
|
|
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
|
elif relative_pos.dim() == 3:
|
|
relative_pos = relative_pos.unsqueeze(1)
|
|
# bsz x height x query x key
|
|
elif relative_pos.dim() != 4:
|
|
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
|
|
|
att_span = self.pos_ebd_size
|
|
relative_pos = relative_pos.long().to(query_layer.device)
|
|
|
|
# rel_index = torch.arange(0, att_span * 2).long().to(query_layer.device)
|
|
# rel_embeddings = rel_embeddings(rel_index).unsqueeze(0)
|
|
rel_embeddings = rel_embeddings.unsqueeze(0)
|
|
# rel_embeddings = rel_embeddings.unsqueeze(0)
|
|
# rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
|
|
if self.share_att_key:
|
|
pos_query_layer = self.transpose_for_scores(self.query_proj(rel_embeddings),
|
|
self.num_attention_heads).repeat(
|
|
query_layer.size(0) // self.num_attention_heads, 1, 1)
|
|
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
|
|
query_layer.size(0) // self.num_attention_heads, 1, 1)
|
|
else:
|
|
if "c2p" in self.pos_att_type:
|
|
pos_key_layer = self.transpose_for_scores(self.pos_key_proj(rel_embeddings),
|
|
self.num_attention_heads).repeat(
|
|
query_layer.size(0) // self.num_attention_heads, 1,
|
|
1) # .split(self.all_head_size, dim=-1)
|
|
if "p2c" in self.pos_att_type:
|
|
pos_query_layer = self.transpose_for_scores(self.pos_query_proj(rel_embeddings),
|
|
self.num_attention_heads).repeat(
|
|
query_layer.size(0) // self.num_attention_heads, 1,
|
|
1) # .split(self.all_head_size, dim=-1)
|
|
|
|
score = 0
|
|
# content->position
|
|
if "c2p" in self.pos_att_type:
|
|
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
|
|
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
|
|
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
|
c2p_att = torch.gather(
|
|
c2p_att,
|
|
dim=-1,
|
|
index=c2p_pos.squeeze(0).expand([query_layer.size(0),
|
|
query_layer.size(1),
|
|
relative_pos.size(-1)]),
|
|
)
|
|
score += c2p_att / scale
|
|
|
|
# position->content
|
|
if "p2c" in self.pos_att_type:
|
|
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
|
|
if key_layer.size(-2) != query_layer.size(-2):
|
|
r_pos = build_relative_position(
|
|
key_layer.size(-2),
|
|
key_layer.size(-2),
|
|
bucket_size=self.position_buckets,
|
|
max_position=self.max_relative_positions,
|
|
).to(query_layer.device)
|
|
r_pos = r_pos.unsqueeze(0)
|
|
else:
|
|
r_pos = relative_pos
|
|
|
|
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
|
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
|
|
p2c_att = torch.gather(
|
|
p2c_att,
|
|
dim=-1,
|
|
index=p2c_pos.squeeze(0).expand([query_layer.size(0),
|
|
key_layer.size(-2),
|
|
key_layer.size(-2)]),
|
|
).transpose(-1, -2)
|
|
score += p2c_att / scale
|
|
|
|
return score
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
|
|
class DebertaV2Embeddings(nn.Module):
|
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
pad_token_id = getattr(config, "pad_token_id", 0)
|
|
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
|
|
|
self.position_biased_input = getattr(config, "position_biased_input", True)
|
|
if not self.position_biased_input:
|
|
self.position_embeddings = None
|
|
else:
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
|
|
|
if config.type_vocab_size > 0:
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
|
|
|
if self.embedding_size != config.hidden_size:
|
|
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
|
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
|
self.dropout = StableDropout(config.hidden_dropout_prob)
|
|
self.config = config
|
|
|
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
|
|
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
|
|
if input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
else:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
seq_length = input_shape[1]
|
|
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
if self.position_embeddings is not None:
|
|
position_embeddings = self.position_embeddings(position_ids.long())
|
|
else:
|
|
position_embeddings = torch.zeros_like(inputs_embeds)
|
|
|
|
embeddings = inputs_embeds
|
|
if self.position_biased_input:
|
|
embeddings += position_embeddings
|
|
if self.config.type_vocab_size > 0:
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
embeddings += token_type_embeddings
|
|
|
|
if self.embedding_size != self.config.hidden_size:
|
|
embeddings = self.embed_proj(embeddings)
|
|
|
|
embeddings = self.LayerNorm(embeddings)
|
|
|
|
if mask is not None:
|
|
if mask.dim() != embeddings.dim():
|
|
if mask.dim() == 4:
|
|
mask = mask.squeeze(1).squeeze(1)
|
|
mask = mask.unsqueeze(2)
|
|
mask = mask.to(embeddings.dtype)
|
|
|
|
embeddings = embeddings * mask
|
|
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
|
|
class DebertaV2PreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = DebertaV2Config
|
|
base_model_prefix = "deberta"
|
|
_keys_to_ignore_on_load_missing = ["position_ids"]
|
|
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
|
supports_gradient_checkpointing = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights."""
|
|
if isinstance(module, nn.Linear):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if isinstance(module, DebertaV2Encoder):
|
|
module.gradient_checkpointing = value
|
|
|
|
|
|
DEBERTA_START_DOCSTRING = r"""
|
|
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
|
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
|
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
|
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.```
|
|
|
|
|
|
Parameters:
|
|
config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
DEBERTA_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
|
|
Indices can be obtained using [`DebertaV2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
|
1]`:
|
|
|
|
- 0 corresponds to a *sentence A* token,
|
|
- 1 corresponds to a *sentence B* token.
|
|
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.max_position_embeddings - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
|
DEBERTA_START_DOCSTRING,
|
|
)
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
|
|
class DebertaV2Model(DebertaV2PreTrainedModel):
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.embeddings = DebertaV2Embeddings(config)
|
|
self.encoder = DebertaV2Encoder(config)
|
|
self.z_steps = 0
|
|
self.config = config
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings.word_embeddings
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.embeddings.word_embeddings = new_embeddings
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=BaseModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (output_hidden_states
|
|
if output_hidden_states is not None else self.config.output_hidden_states)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(input_shape, device=device)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
embedding_output = self.embeddings(
|
|
input_ids=input_ids,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
attention_mask,
|
|
output_hidden_states=True,
|
|
output_attentions=output_attentions,
|
|
return_dict=return_dict,
|
|
)
|
|
encoded_layers = encoder_outputs[1]
|
|
|
|
if self.z_steps > 1:
|
|
hidden_states = encoded_layers[-2]
|
|
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
|
query_states = encoded_layers[-1]
|
|
rel_embeddings = self.encoder.get_rel_embedding()
|
|
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
|
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
|
for layer in layers[1:]:
|
|
query_states = layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=False,
|
|
query_states=query_states,
|
|
relative_pos=rel_pos,
|
|
rel_embeddings=rel_embeddings,
|
|
)
|
|
encoded_layers.append(query_states)
|
|
|
|
sequence_output = encoded_layers[-1]
|
|
|
|
if not return_dict:
|
|
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2):]
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=sequence_output,
|
|
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
|
|
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.deberta = DebertaV2Model(config)
|
|
self.cls = DebertaV2OnlyMLMHead(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.cls.predictions.decoder
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.cls.predictions.decoder = new_embeddings
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=MaskedLMOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, MaskedLMOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.deberta(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
prediction_scores = self.cls(sequence_output)
|
|
|
|
masked_lm_loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (prediction_scores,) + outputs[1:]
|
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
|
|
|
return MaskedLMOutput(
|
|
loss=masked_lm_loss,
|
|
logits=prediction_scores,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
|
class DebertaV2PredictionHeadTransform(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.hidden_act
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
|
class DebertaV2LMPredictionHead(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.transform = DebertaV2PredictionHeadTransform(config)
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
|
|
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
|
self.decoder.bias = self.bias
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.decoder(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
|
class DebertaV2OnlyMLMHead(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.predictions = DebertaV2LMPredictionHead(config)
|
|
|
|
def forward(self, sequence_output):
|
|
prediction_scores = self.predictions(sequence_output)
|
|
return prediction_scores
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
|
pooled output) e.g. for GLUE tasks.
|
|
""",
|
|
DEBERTA_START_DOCSTRING,
|
|
)
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification with Deberta->DebertaV2
|
|
class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
num_labels = getattr(config, "num_labels", 2)
|
|
self.num_labels = num_labels
|
|
|
|
self.deberta = DebertaV2Model(config)
|
|
self.pooler = ContextPooler(config)
|
|
output_dim = self.pooler.output_dim
|
|
|
|
self.classifier = nn.Linear(output_dim, num_labels)
|
|
drop_out = getattr(config, "cls_dropout", None)
|
|
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
|
self.dropout = StableDropout(drop_out)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.deberta.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.deberta.set_input_embeddings(new_embeddings)
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=SequenceClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.deberta(
|
|
input_ids,
|
|
token_type_ids=token_type_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
encoder_layer = outputs[0]
|
|
pooled_output = self.pooler(encoder_layer)
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
# regression task
|
|
loss_fn = nn.MSELoss()
|
|
logits = logits.view(-1).to(labels.dtype)
|
|
loss = loss_fn(logits, labels.view(-1))
|
|
elif labels.dim() == 1 or labels.size(-1) == 1:
|
|
label_index = (labels >= 0).nonzero()
|
|
labels = labels.long()
|
|
if label_index.size(0) > 0:
|
|
labeled_logits = torch.gather(logits, 0, label_index.expand(label_index.size(0),
|
|
logits.size(1)))
|
|
labels = torch.gather(labels, 0, label_index.view(-1))
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
|
else:
|
|
loss = torch.tensor(0).to(logits)
|
|
else:
|
|
log_softmax = nn.LogSoftmax(-1)
|
|
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
|
elif self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutput(loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
DEBERTA_START_DOCSTRING,
|
|
)
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
|
|
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.deberta = DebertaV2Model(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.deberta(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
sequence_output = self.dropout(sequence_output)
|
|
logits = self.classifier(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
DEBERTA_START_DOCSTRING,
|
|
)
|
|
# Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering with Deberta->DebertaV2
|
|
class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.deberta = DebertaV2Model(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=QuestionAnsweringModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
start_positions: Optional[torch.Tensor] = None,
|
|
end_positions: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.deberta(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[1:]
|
|
return ((total_loss,) + output) if total_loss is not None else output
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
|
softmax) e.g. for RocStories/SWAG tasks.
|
|
""",
|
|
DEBERTA_START_DOCSTRING,
|
|
)
|
|
class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
num_labels = getattr(config, "num_labels", 2)
|
|
self.num_labels = num_labels
|
|
|
|
self.deberta = DebertaV2Model(config)
|
|
self.pooler = ContextPooler(config)
|
|
output_dim = self.pooler.output_dim
|
|
|
|
self.classifier = nn.Linear(output_dim, 1)
|
|
drop_out = getattr(config, "cls_dropout", None)
|
|
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
|
self.dropout = StableDropout(drop_out)
|
|
|
|
self.init_weights()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.deberta.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.deberta.set_input_embeddings(new_embeddings)
|
|
|
|
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
processor_class=_TOKENIZER_FOR_DOC,
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=MultipleChoiceModelOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
inputs_embeds=None,
|
|
labels=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
|
`input_ids` above)
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
|
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
|
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
|
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
|
flat_inputs_embeds = (inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
|
if inputs_embeds is not None else None)
|
|
|
|
outputs = self.deberta(
|
|
flat_input_ids,
|
|
position_ids=flat_position_ids,
|
|
token_type_ids=flat_token_type_ids,
|
|
attention_mask=flat_attention_mask,
|
|
inputs_embeds=flat_inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
encoder_layer = outputs[0]
|
|
pooled_output = self.pooler(encoder_layer)
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
reshaped_logits = logits.view(-1, num_choices)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(reshaped_logits, labels)
|
|
|
|
if not return_dict:
|
|
output = (reshaped_logits,) + outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return MultipleChoiceModelOutput(
|
|
loss=loss,
|
|
logits=reshaped_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|