mirror of https://github.com/hpcaitech/ColossalAI
27061426f7
* [gemini] remove distributed-related part from colotensor (#4379) * [gemini] remove process group dependency * [gemini] remove tp part from colo tensor * [gemini] patch inplace op * [gemini] fix param op hook and update tests * [test] remove useless tests * [test] remove useless tests * [misc] fix requirements * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [test] fix model zoo * [misc] update requirements * [gemini] refactor gemini optimizer and gemini ddp (#4398) * [gemini] update optimizer interface * [gemini] renaming gemini optimizer * [gemini] refactor gemini ddp class * [example] update gemini related example * [example] update gemini related example * [plugin] fix gemini plugin args * [test] update gemini ckpt tests * [gemini] fix checkpoint io * [example] fix opt example requirements * [example] fix opt example * [example] fix opt example * [example] fix opt example * [gemini] add static placement policy (#4443) * [gemini] add static placement policy * [gemini] fix param offload * [test] update gemini tests * [plugin] update gemini plugin * [plugin] update gemini plugin docstr * [misc] fix flash attn requirement * [test] fix gemini checkpoint io test * [example] update resnet example result (#4457) * [example] update bert example result (#4458) * [doc] update gemini doc (#4468) * [example] update gemini related examples (#4473) * [example] update gpt example * [example] update dreambooth example * [example] update vit * [example] update opt * [example] update palm * [example] update vit and opt benchmark * [hotfix] fix bert in model zoo (#4480) * [hotfix] fix bert in model zoo * [test] remove chatglm gemini test * [test] remove sam gemini test * [test] remove vit gemini test * [hotfix] fix opt tutorial example (#4497) * [hotfix] fix opt tutorial example * [hotfix] fix opt tutorial example |
||
---|---|---|
.. | ||
model | ||
utils | ||
README.md | ||
arguments.py | ||
bert_dataset_provider.py | ||
evaluation.py | ||
hostfile | ||
loss.py | ||
nvidia_bert_dataset_provider.py | ||
pretrain_utils.py | ||
run_pretrain.sh | ||
run_pretrain_resume.sh | ||
run_pretraining.py |
README.md
Pretraining
- Pretraining roberta through running the script below. Detailed parameter descriptions can be found in the arguments.py.
data_path_prefix
is absolute path specifies output of preprocessing. You have to modify the hostfile according to your cluster.
bash run_pretrain.sh
--hostfile
: servers' host name from /etc/hosts--include
: servers which will be used--nproc_per_node
: number of process(GPU) from each server--data_path_prefix
: absolute location of train data, e.g., /h5/0.h5--eval_data_path_prefix
: absolute location of eval data--tokenizer_path
: tokenizer path contains huggingface tokenizer.json, e.g./tokenizer/tokenizer.json--bert_config
: config.json which represent model--mlm
: model type of backbone, bert or deberta_v2
- if resume training from earlier checkpoint, run the script below.
bash run_pretrain_resume.sh
--resume_train
: whether to resume training--load_pretrain_model
: absolute path which contains model checkpoint--load_optimizer_lr
: absolute path which contains optimizer checkpoint