ColossalAI/examples/community/roberta/pretraining
Hongxin Liu 27061426f7
[gemini] improve compatibility and add static placement policy (#4479)
* [gemini] remove distributed-related part from colotensor (#4379)

* [gemini] remove process group dependency

* [gemini] remove tp part from colo tensor

* [gemini] patch inplace op

* [gemini] fix param op hook and update tests

* [test] remove useless tests

* [test] remove useless tests

* [misc] fix requirements

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [test] fix model zoo

* [misc] update requirements

* [gemini] refactor gemini optimizer and gemini ddp (#4398)

* [gemini] update optimizer interface

* [gemini] renaming gemini optimizer

* [gemini] refactor gemini ddp class

* [example] update gemini related example

* [example] update gemini related example

* [plugin] fix gemini plugin args

* [test] update gemini ckpt tests

* [gemini] fix checkpoint io

* [example] fix opt example requirements

* [example] fix opt example

* [example] fix opt example

* [example] fix opt example

* [gemini] add static placement policy (#4443)

* [gemini] add static placement policy

* [gemini] fix param offload

* [test] update gemini tests

* [plugin] update gemini plugin

* [plugin] update gemini plugin docstr

* [misc] fix flash attn requirement

* [test] fix gemini checkpoint io test

* [example] update resnet example result (#4457)

* [example] update bert example result (#4458)

* [doc] update gemini doc (#4468)

* [example] update gemini related examples (#4473)

* [example] update gpt example

* [example] update dreambooth example

* [example] update vit

* [example] update opt

* [example] update palm

* [example] update vit and opt benchmark

* [hotfix] fix bert in model zoo (#4480)

* [hotfix] fix bert in model zoo

* [test] remove chatglm gemini test

* [test] remove sam gemini test

* [test] remove vit gemini test

* [hotfix] fix opt tutorial example (#4497)

* [hotfix] fix opt tutorial example

* [hotfix] fix opt tutorial example
2023-08-24 09:29:25 +08:00
..
model fix typo examples/community/roberta (#3925) 2023-06-08 14:28:34 +08:00
utils fix typo examples/community/roberta (#3925) 2023-06-08 14:28:34 +08:00
README.md fix typo examples/community/roberta (#3925) 2023-06-08 14:28:34 +08:00
arguments.py fix typo examples/community/roberta (#3925) 2023-06-08 14:28:34 +08:00
bert_dataset_provider.py [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
evaluation.py [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
hostfile [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
loss.py [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
nvidia_bert_dataset_provider.py [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
pretrain_utils.py [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
run_pretrain.sh [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
run_pretrain_resume.sh [example] reorganize for community examples (#3557) 2023-04-14 16:27:48 +08:00
run_pretraining.py [gemini] improve compatibility and add static placement policy (#4479) 2023-08-24 09:29:25 +08:00

README.md

Pretraining

  1. Pretraining roberta through running the script below. Detailed parameter descriptions can be found in the arguments.py. data_path_prefix is absolute path specifies output of preprocessing. You have to modify the hostfile according to your cluster.
bash run_pretrain.sh
  • --hostfile: servers' host name from /etc/hosts
  • --include: servers which will be used
  • --nproc_per_node: number of process(GPU) from each server
  • --data_path_prefix: absolute location of train data, e.g., /h5/0.h5
  • --eval_data_path_prefix: absolute location of eval data
  • --tokenizer_path: tokenizer path contains huggingface tokenizer.json, e.g./tokenizer/tokenizer.json
  • --bert_config: config.json which represent model
  • --mlm: model type of backbone, bert or deberta_v2
  1. if resume training from earlier checkpoint, run the script below.
bash run_pretrain_resume.sh
  • --resume_train: whether to resume training
  • --load_pretrain_model: absolute path which contains model checkpoint
  • --load_optimizer_lr: absolute path which contains optimizer checkpoint