Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

89 lines
2.9 KiB

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
try:
from transformers import Qwen2Config
HAS_QWEN2 = True
except ImportError:
HAS_QWEN2 = False
if HAS_QWEN2:
# ===============================
# Register Qwen2
# ===============================
def data_gen():
# the input ids are corresponding to the sentence
# 'Hello, my dog is cute'
#
# the code is give below:
# -----------------------------------
# from transformers import Qwen2TokenizerFast
# tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen1.5-7B-Chat")
# input = 'Hello, my dog is cute'
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
# -----------------------------------
input_ids = torch.Tensor(
[[9707, 11, 847, 5562, 374, 13, 123, 18838], [9707, 11, 847, 5562, 374, 17, 89, 18838]]
).long()
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
# label is needed for causal lm
def data_gen_for_causal_lm():
data = data_gen()
labels = data["input_ids"].clone()
data["labels"] = labels
return data
# transform the output to a dict
output_transform_fn = lambda x: x
# function to get the loss
loss_fn = lambda output: output["last_hidden_state"].mean()
loss_fn_for_causal_lm = lambda output: output["loss"]
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
config = Qwen2Config(
hidden_size=128,
intermediate_size=256,
max_window_layers=4,
num_attention_heads=16,
num_hidden_layers=4,
num_key_value_heads=16,
)
config.pad_token_id = 0
# register the following models
# transformers.Qwen2Model,
# transformers.Qwen2ForCausalLM,
# transformers.Qwen2ForSequenceClassification,
model_zoo.register(
name="transformers_qwen2",
model_fn=lambda: transformers.Qwen2Model(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_qwen2_for_causal_lm",
model_fn=lambda: transformers.Qwen2ForCausalLM(config),
data_gen_fn=data_gen_for_causal_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_causal_lm,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_qwen2_for_sequence_classification",
model_fn=lambda: transformers.Qwen2ForSequenceClassification(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_seq_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)