mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
2.9 KiB
89 lines
2.9 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
try: |
|
from transformers import Qwen2Config |
|
|
|
HAS_QWEN2 = True |
|
except ImportError: |
|
HAS_QWEN2 = False |
|
|
|
if HAS_QWEN2: |
|
# =============================== |
|
# Register Qwen2 |
|
# =============================== |
|
|
|
def data_gen(): |
|
# the input ids are corresponding to the sentence |
|
# 'Hello, my dog is cute' |
|
# |
|
# the code is give below: |
|
# ----------------------------------- |
|
# from transformers import Qwen2TokenizerFast |
|
# tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen1.5-7B-Chat") |
|
# input = 'Hello, my dog is cute' |
|
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda') |
|
# ----------------------------------- |
|
|
|
input_ids = torch.Tensor( |
|
[[9707, 11, 847, 5562, 374, 13, 123, 18838], [9707, 11, 847, 5562, 374, 17, 89, 18838]] |
|
).long() |
|
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]).long() |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
# label is needed for causal lm |
|
def data_gen_for_causal_lm(): |
|
data = data_gen() |
|
labels = data["input_ids"].clone() |
|
data["labels"] = labels |
|
return data |
|
|
|
# transform the output to a dict |
|
output_transform_fn = lambda x: x |
|
|
|
# function to get the loss |
|
loss_fn = lambda output: output["last_hidden_state"].mean() |
|
loss_fn_for_causal_lm = lambda output: output["loss"] |
|
loss_fn_for_seq_classification = lambda output: output["logits"].mean() |
|
|
|
config = Qwen2Config( |
|
hidden_size=128, |
|
intermediate_size=256, |
|
max_window_layers=4, |
|
num_attention_heads=16, |
|
num_hidden_layers=4, |
|
num_key_value_heads=16, |
|
) |
|
|
|
config.pad_token_id = 0 |
|
|
|
# register the following models |
|
# transformers.Qwen2Model, |
|
# transformers.Qwen2ForCausalLM, |
|
# transformers.Qwen2ForSequenceClassification, |
|
model_zoo.register( |
|
name="transformers_qwen2", |
|
model_fn=lambda: transformers.Qwen2Model(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_qwen2_for_causal_lm", |
|
model_fn=lambda: transformers.Qwen2ForCausalLM(config), |
|
data_gen_fn=data_gen_for_causal_lm, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_causal_lm, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_qwen2_for_sequence_classification", |
|
model_fn=lambda: transformers.Qwen2ForSequenceClassification(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_seq_classification, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|