|
|
|
import torch
|
|
|
|
import transformers
|
|
|
|
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
|
|
|
|
try:
|
|
|
|
from transformers import Qwen2Config
|
|
|
|
|
|
|
|
HAS_QWEN2 = True
|
|
|
|
except ImportError:
|
|
|
|
HAS_QWEN2 = False
|
|
|
|
|
|
|
|
if HAS_QWEN2:
|
|
|
|
# ===============================
|
|
|
|
# Register Qwen2
|
|
|
|
# ===============================
|
|
|
|
|
|
|
|
def data_gen():
|
|
|
|
# the input ids are corresponding to the sentence
|
|
|
|
# 'Hello, my dog is cute'
|
|
|
|
#
|
|
|
|
# the code is give below:
|
|
|
|
# -----------------------------------
|
|
|
|
# from transformers import Qwen2TokenizerFast
|
|
|
|
# tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen1.5-7B-Chat")
|
|
|
|
# input = 'Hello, my dog is cute'
|
|
|
|
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
|
|
|
|
# -----------------------------------
|
|
|
|
|
|
|
|
input_ids = torch.Tensor(
|
|
|
|
[[9707, 11, 847, 5562, 374, 13, 123, 18838], [9707, 11, 847, 5562, 374, 17, 89, 18838]]
|
|
|
|
).long()
|
|
|
|
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]).long()
|
|
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
|
# label is needed for causal lm
|
|
|
|
def data_gen_for_causal_lm():
|
|
|
|
data = data_gen()
|
|
|
|
labels = data["input_ids"].clone()
|
|
|
|
data["labels"] = labels
|
|
|
|
return data
|
|
|
|
|
|
|
|
# transform the output to a dict
|
|
|
|
output_transform_fn = lambda x: x
|
|
|
|
|
|
|
|
# function to get the loss
|
|
|
|
loss_fn = lambda output: output["last_hidden_state"].mean()
|
|
|
|
loss_fn_for_causal_lm = lambda output: output["loss"]
|
|
|
|
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
|
|
|
|
|
|
|
|
config = Qwen2Config(
|
|
|
|
hidden_size=128,
|
|
|
|
intermediate_size=256,
|
|
|
|
max_window_layers=4,
|
|
|
|
num_attention_heads=16,
|
|
|
|
num_hidden_layers=4,
|
|
|
|
num_key_value_heads=16,
|
|
|
|
)
|
|
|
|
|
|
|
|
config.pad_token_id = 0
|
|
|
|
|
|
|
|
# register the following models
|
|
|
|
# transformers.Qwen2Model,
|
|
|
|
# transformers.Qwen2ForCausalLM,
|
|
|
|
# transformers.Qwen2ForSequenceClassification,
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_qwen2",
|
|
|
|
model_fn=lambda: transformers.Qwen2Model(config),
|
|
|
|
data_gen_fn=data_gen,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_qwen2_for_causal_lm",
|
|
|
|
model_fn=lambda: transformers.Qwen2ForCausalLM(config),
|
|
|
|
data_gen_fn=data_gen_for_causal_lm,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn_for_causal_lm,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_qwen2_for_sequence_classification",
|
|
|
|
model_fn=lambda: transformers.Qwen2ForSequenceClassification(config),
|
|
|
|
data_gen_fn=data_gen,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn_for_seq_classification,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|