mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
2.9 KiB
87 lines
2.9 KiB
# modified from tests/kit/model_zoo/transformers/mistral.py |
|
import torch |
|
import transformers |
|
from transformers import MixtralConfig |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence Mixtral |
|
# =============================== |
|
|
|
|
|
def data_gen(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import AutoModelForCausalLM, AutoTokenizer |
|
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1") |
|
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement) |
|
# tokenized_input = tokenizer([input], return_tensors="pt") |
|
# input_ids = tokenized_input['input_ids'] |
|
# attention_mask = tokenized_input['attention_mask'] |
|
input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_lm(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
data["labels"] = data["input_ids"].clone() |
|
return data |
|
|
|
|
|
def data_gen_for_sequence_classification(): |
|
# sequence classification data gen |
|
data = data_gen() |
|
data["labels"] = torch.tensor([1], dtype=torch.int64) |
|
return data |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_mixtral_model = lambda x: x[0].mean() |
|
loss_fn = lambda x: x.loss |
|
loss_fn_for_seq_classification = lambda output: output.logits.mean() |
|
|
|
config = MixtralConfig( |
|
hidden_size=32, |
|
intermediate_size=32, |
|
num_attention_heads=8, |
|
num_hidden_layers=2, |
|
vocab_size=1000, |
|
attn_implementation="flash_attention_2", |
|
torch_dtype="float16", |
|
output_router_logits=True, |
|
) |
|
|
|
if hasattr(config, "pad_token_id"): |
|
config.pad_token_id = config.eos_token_id |
|
|
|
model_zoo.register( |
|
name="transformers_mixtral", |
|
model_fn=lambda: transformers.MixtralModel(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_mixtral_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
# model_zoo.register( |
|
# name="transformers_mixtral_for_casual_lm", |
|
# model_fn=lambda: transformers.MixtralForCausalLM(config), |
|
# data_gen_fn=data_gen_for_lm, |
|
# output_transform_fn=output_transform_fn, |
|
# loss_fn=loss_fn, |
|
# model_attribute=ModelAttribute(has_control_flow=True), |
|
# ) |
|
# model_zoo.register( |
|
# name="transformers_mixtral_for_sequence_classification", |
|
# model_fn=lambda: transformers.MixtralForSequenceClassification(config), |
|
# data_gen_fn=data_gen_for_sequence_classification, |
|
# output_transform_fn=output_transform_fn, |
|
# loss_fn=loss_fn_for_seq_classification, |
|
# model_attribute=ModelAttribute(has_control_flow=True), |
|
# )
|
|
|