# modified from tests/kit/model_zoo/transformers/mistral.py import torch import transformers from transformers import MixtralConfig from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence Mixtral # =============================== def data_gen(): # Generated from following code snippet # # from transformers import AutoModelForCausalLM, AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1") # input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement) # tokenized_input = tokenizer([input], return_tensors="pt") # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data["labels"] = data["input_ids"].clone() return data def data_gen_for_sequence_classification(): # sequence classification data gen data = data_gen() data["labels"] = torch.tensor([1], dtype=torch.int64) return data # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn_for_mixtral_model = lambda x: x[0].mean() loss_fn = lambda x: x.loss loss_fn_for_seq_classification = lambda output: output.logits.mean() config = MixtralConfig( hidden_size=32, intermediate_size=32, num_attention_heads=8, num_hidden_layers=2, vocab_size=1000, attn_implementation="flash_attention_2", torch_dtype="float16", output_router_logits=True, ) if hasattr(config, "pad_token_id"): config.pad_token_id = config.eos_token_id model_zoo.register( name="transformers_mixtral", model_fn=lambda: transformers.MixtralModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_mixtral_model, model_attribute=ModelAttribute(has_control_flow=True), ) # model_zoo.register( # name="transformers_mixtral_for_casual_lm", # model_fn=lambda: transformers.MixtralForCausalLM(config), # data_gen_fn=data_gen_for_lm, # output_transform_fn=output_transform_fn, # loss_fn=loss_fn, # model_attribute=ModelAttribute(has_control_flow=True), # ) # model_zoo.register( # name="transformers_mixtral_for_sequence_classification", # model_fn=lambda: transformers.MixtralForSequenceClassification(config), # data_gen_fn=data_gen_for_sequence_classification, # output_transform_fn=output_transform_fn, # loss_fn=loss_fn_for_seq_classification, # model_attribute=ModelAttribute(has_control_flow=True), # )