Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

112 lines
3.5 KiB

import copy
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence GPT
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoTokenizer
# input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement)
# tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data["labels"] = data["input_ids"].clone()
return data
def data_gen_for_question_answering():
# question answering data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
start_positions = torch.tensor([0], dtype=torch.int64)
data["start_positions"] = start_positions
end_positions = torch.tensor([1], dtype=torch.int64)
data["end_positions"] = end_positions
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_gptj_model = lambda x: torch.nn.functional.mse_loss(
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
)
loss_fn = lambda x: x.loss
config = transformers.GPTJConfig(
n_layer=2,
n_head=4,
vocab_size=50258,
n_embd=256,
hidden_size=256,
n_positions=512,
attn_pdrop=0,
embd_pdrop=0,
resid_pdrop=0,
hidden_dropout=0,
problem_type="single_label_classification",
pad_token_id=50256,
)
config_for_token_classification = copy.deepcopy(config)
config_for_token_classification.num_labels = 2
# register the following models
model_zoo.register(
name="transformers_gptj",
model_fn=lambda: transformers.GPTJModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_gptj_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gptj_lm",
model_fn=lambda: transformers.GPTJForCausalLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gptj_for_question_answering",
model_fn=lambda: transformers.GPTJForQuestionAnswering(config),
data_gen_fn=data_gen_for_question_answering,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gptj_for_sequence_classification",
model_fn=lambda: transformers.GPTJForSequenceClassification(config_for_token_classification),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)