mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
3.5 KiB
112 lines
3.5 KiB
import copy |
|
|
|
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence GPT |
|
# =============================== |
|
|
|
|
|
def data_gen(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import AutoTokenizer |
|
# input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement) |
|
# tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") |
|
# tokenized_input = tokenizer(input, return_tensors='pt') |
|
# input_ids = tokenized_input['input_ids'] |
|
# attention_mask = tokenized_input['attention_mask'] |
|
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_lm(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
data["labels"] = data["input_ids"].clone() |
|
return data |
|
|
|
|
|
def data_gen_for_question_answering(): |
|
# question answering data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen() |
|
start_positions = torch.tensor([0], dtype=torch.int64) |
|
data["start_positions"] = start_positions |
|
end_positions = torch.tensor([1], dtype=torch.int64) |
|
data["end_positions"] = end_positions |
|
return data |
|
|
|
|
|
def data_gen_for_sequence_classification(): |
|
# sequence classification data gen |
|
data = data_gen() |
|
data["labels"] = torch.tensor([1], dtype=torch.int64) |
|
return data |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_gptj_model = lambda x: torch.nn.functional.mse_loss( |
|
x.last_hidden_state, torch.ones_like(x.last_hidden_state) |
|
) |
|
loss_fn = lambda x: x.loss |
|
|
|
config = transformers.GPTJConfig( |
|
n_layer=2, |
|
n_head=4, |
|
vocab_size=50258, |
|
n_embd=256, |
|
hidden_size=256, |
|
n_positions=512, |
|
attn_pdrop=0, |
|
embd_pdrop=0, |
|
resid_pdrop=0, |
|
hidden_dropout=0, |
|
problem_type="single_label_classification", |
|
pad_token_id=50256, |
|
) |
|
|
|
config_for_token_classification = copy.deepcopy(config) |
|
config_for_token_classification.num_labels = 2 |
|
|
|
# register the following models |
|
model_zoo.register( |
|
name="transformers_gptj", |
|
model_fn=lambda: transformers.GPTJModel(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_gptj_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gptj_lm", |
|
model_fn=lambda: transformers.GPTJForCausalLM(config), |
|
data_gen_fn=data_gen_for_lm, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gptj_for_question_answering", |
|
model_fn=lambda: transformers.GPTJForQuestionAnswering(config), |
|
data_gen_fn=data_gen_for_question_answering, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gptj_for_sequence_classification", |
|
model_fn=lambda: transformers.GPTJForSequenceClassification(config_for_token_classification), |
|
data_gen_fn=data_gen_for_sequence_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|