import copy import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence GPT # =============================== def data_gen(): # Generated from following code snippet # # from transformers import AutoTokenizer # input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement) # tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") # tokenized_input = tokenizer(input, return_tensors='pt') # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data["labels"] = data["input_ids"].clone() return data def data_gen_for_question_answering(): # question answering data gen # `labels` is the type not the token id for token classification, 0 or 1 data = data_gen() start_positions = torch.tensor([0], dtype=torch.int64) data["start_positions"] = start_positions end_positions = torch.tensor([1], dtype=torch.int64) data["end_positions"] = end_positions return data def data_gen_for_sequence_classification(): # sequence classification data gen data = data_gen() data["labels"] = torch.tensor([1], dtype=torch.int64) return data # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn_for_gptj_model = lambda x: torch.nn.functional.mse_loss( x.last_hidden_state, torch.ones_like(x.last_hidden_state) ) loss_fn = lambda x: x.loss config = transformers.GPTJConfig( n_layer=2, n_head=4, vocab_size=50258, n_embd=256, hidden_size=256, n_positions=512, attn_pdrop=0, embd_pdrop=0, resid_pdrop=0, hidden_dropout=0, problem_type="single_label_classification", pad_token_id=50256, ) config_for_token_classification = copy.deepcopy(config) config_for_token_classification.num_labels = 2 # register the following models model_zoo.register( name="transformers_gptj", model_fn=lambda: transformers.GPTJModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_gptj_model, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gptj_lm", model_fn=lambda: transformers.GPTJForCausalLM(config), data_gen_fn=data_gen_for_lm, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gptj_for_question_answering", model_fn=lambda: transformers.GPTJForQuestionAnswering(config), data_gen_fn=data_gen_for_question_answering, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gptj_for_sequence_classification", model_fn=lambda: transformers.GPTJForSequenceClassification(config_for_token_classification), data_gen_fn=data_gen_for_sequence_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), )