mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.7 KiB
169 lines
5.7 KiB
import copy |
|
|
|
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence GPT |
|
# =============================== |
|
|
|
|
|
def data_gen(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import GPT2Tokenizer |
|
# input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement) |
|
# tokenized_input = tokenizer(input, return_tensors='pt') |
|
# input_ids = tokenized_input['input_ids'] |
|
# attention_mask = tokenized_input['attention_mask'] |
|
input_ids = torch.tensor([[22, 11, 616, 4, 5, 13, 318, 345]], dtype=torch.int64) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_lm(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
|
|
# Test padded sequence for Ring Attention |
|
padding = torch.zeros(1, data["input_ids"].shape[1] // 2, dtype=torch.long) |
|
data["input_ids"] = torch.cat([data["input_ids"], padding], dim=1) |
|
data["attention_mask"] = torch.cat([data["attention_mask"], padding], dim=1) |
|
|
|
ignore_idx = -100 |
|
labels = data["input_ids"].clone() |
|
labels[~data["attention_mask"].bool()] = ignore_idx |
|
data["labels"] = labels |
|
return data |
|
|
|
|
|
def data_gen_for_question_answering(): |
|
# question answering data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen() |
|
start_positions = torch.tensor([0], dtype=torch.int64) |
|
data["start_positions"] = start_positions |
|
end_positions = torch.tensor([1], dtype=torch.int64) |
|
data["end_positions"] = end_positions |
|
return data |
|
|
|
|
|
def data_gen_for_token_classification(): |
|
# token classification data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen() |
|
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 1]], dtype=torch.int64) |
|
return data |
|
|
|
|
|
def data_gen_for_sequence_classification(): |
|
# sequence classification data gen |
|
data = data_gen() |
|
data["labels"] = torch.tensor([1], dtype=torch.int64) |
|
return data |
|
|
|
|
|
def date_gen_for_double_heads(): |
|
num_choices = 2 |
|
batch_size = 2 |
|
input_ids = torch.tensor( |
|
[[46, 11, 616, 432, 318, 19, 318, 555], [777, 11, 235, 333, 318, 231, 468, 136]], |
|
dtype=torch.int64, |
|
) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
mc_labels = torch.zeros(input_ids.shape[0], dtype=torch.int64) |
|
|
|
mc_token_ids = torch.arange(0, num_choices, dtype=torch.int64) |
|
mc_token_ids = mc_token_ids.expand((batch_size, num_choices)) |
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, num_choices, -1).contiguous() |
|
multiple_choice_input_mask = attention_mask.unsqueeze(1).expand(-1, num_choices, -1).contiguous() |
|
|
|
inputs = { |
|
"input_ids": multiple_choice_inputs_ids, |
|
"mc_token_ids": mc_token_ids, |
|
"attention_mask": multiple_choice_input_mask, |
|
"labels": multiple_choice_inputs_ids, |
|
"mc_labels": mc_labels, |
|
} |
|
return inputs |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_gpt2_model = lambda x: torch.nn.functional.mse_loss( |
|
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"]) |
|
) |
|
loss_fn = lambda x: x["loss"] |
|
|
|
config = transformers.GPT2Config( |
|
n_layer=2, |
|
n_head=4, |
|
n_embd=128, |
|
vocab_size=1024, |
|
attn_pdrop=0, |
|
embd_pdrop=0, |
|
resid_pdrop=0, |
|
summary_first_dropout=0, |
|
hidden_dropout=0, |
|
problem_type="single_label_classification", |
|
pad_token_id=1022, |
|
tie_word_embeddings=True, |
|
) |
|
|
|
config_for_token_classification = copy.deepcopy(config) |
|
config_for_token_classification.num_labels = 2 |
|
|
|
# register the following models |
|
model_zoo.register( |
|
name="transformers_gpt", |
|
model_fn=lambda: transformers.GPT2Model(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_gpt2_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gpt_lm", |
|
model_fn=lambda: transformers.GPT2LMHeadModel(config), |
|
data_gen_fn=data_gen_for_lm, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gpt_double_heads", |
|
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config), |
|
data_gen_fn=date_gen_for_double_heads, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=lambda x: x.loss + x.mc_loss, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gpt_for_question_answering", |
|
model_fn=lambda: transformers.GPT2ForQuestionAnswering(config), |
|
data_gen_fn=data_gen_for_question_answering, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gpt_for_token_classification", |
|
model_fn=lambda: transformers.GPT2ForTokenClassification(config_for_token_classification), |
|
data_gen_fn=data_gen_for_token_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_gpt_for_sequence_classification", |
|
model_fn=lambda: transformers.GPT2ForSequenceClassification(config_for_token_classification), |
|
data_gen_fn=data_gen_for_sequence_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|