Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

169 lines
5.7 KiB

import copy
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence GPT
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import GPT2Tokenizer
# input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement)
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[22, 11, 616, 4, 5, 13, 318, 345]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
# Test padded sequence for Ring Attention
padding = torch.zeros(1, data["input_ids"].shape[1] // 2, dtype=torch.long)
data["input_ids"] = torch.cat([data["input_ids"], padding], dim=1)
data["attention_mask"] = torch.cat([data["attention_mask"], padding], dim=1)
ignore_idx = -100
labels = data["input_ids"].clone()
labels[~data["attention_mask"].bool()] = ignore_idx
data["labels"] = labels
return data
def data_gen_for_question_answering():
# question answering data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
start_positions = torch.tensor([0], dtype=torch.int64)
data["start_positions"] = start_positions
end_positions = torch.tensor([1], dtype=torch.int64)
data["end_positions"] = end_positions
return data
def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 1]], dtype=torch.int64)
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
def date_gen_for_double_heads():
num_choices = 2
batch_size = 2
input_ids = torch.tensor(
[[46, 11, 616, 432, 318, 19, 318, 555], [777, 11, 235, 333, 318, 231, 468, 136]],
dtype=torch.int64,
)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
mc_labels = torch.zeros(input_ids.shape[0], dtype=torch.int64)
mc_token_ids = torch.arange(0, num_choices, dtype=torch.int64)
mc_token_ids = mc_token_ids.expand((batch_size, num_choices))
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, num_choices, -1).contiguous()
multiple_choice_input_mask = attention_mask.unsqueeze(1).expand(-1, num_choices, -1).contiguous()
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"labels": multiple_choice_inputs_ids,
"mc_labels": mc_labels,
}
return inputs
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_gpt2_model = lambda x: torch.nn.functional.mse_loss(
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"])
)
loss_fn = lambda x: x["loss"]
config = transformers.GPT2Config(
n_layer=2,
n_head=4,
n_embd=128,
vocab_size=1024,
attn_pdrop=0,
embd_pdrop=0,
resid_pdrop=0,
summary_first_dropout=0,
hidden_dropout=0,
problem_type="single_label_classification",
pad_token_id=1022,
tie_word_embeddings=True,
)
config_for_token_classification = copy.deepcopy(config)
config_for_token_classification.num_labels = 2
# register the following models
model_zoo.register(
name="transformers_gpt",
model_fn=lambda: transformers.GPT2Model(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_gpt2_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gpt_lm",
model_fn=lambda: transformers.GPT2LMHeadModel(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gpt_double_heads",
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
data_gen_fn=date_gen_for_double_heads,
output_transform_fn=output_transform_fn,
loss_fn=lambda x: x.loss + x.mc_loss,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gpt_for_question_answering",
model_fn=lambda: transformers.GPT2ForQuestionAnswering(config),
data_gen_fn=data_gen_for_question_answering,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gpt_for_token_classification",
model_fn=lambda: transformers.GPT2ForTokenClassification(config_for_token_classification),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_gpt_for_sequence_classification",
model_fn=lambda: transformers.GPT2ForSequenceClassification(config_for_token_classification),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)