import copy import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence GPT # =============================== def data_gen(): # Generated from following code snippet # # from transformers import GPT2Tokenizer # input = 'Hello, my dog is cute is cute' (last two words repeated to satisfy length requirement) # tokenized_input = tokenizer(input, return_tensors='pt') # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[22, 11, 616, 4, 5, 13, 318, 345]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() # Test padded sequence for Ring Attention padding = torch.zeros(1, data["input_ids"].shape[1] // 2, dtype=torch.long) data["input_ids"] = torch.cat([data["input_ids"], padding], dim=1) data["attention_mask"] = torch.cat([data["attention_mask"], padding], dim=1) ignore_idx = -100 labels = data["input_ids"].clone() labels[~data["attention_mask"].bool()] = ignore_idx data["labels"] = labels return data def data_gen_for_question_answering(): # question answering data gen # `labels` is the type not the token id for token classification, 0 or 1 data = data_gen() start_positions = torch.tensor([0], dtype=torch.int64) data["start_positions"] = start_positions end_positions = torch.tensor([1], dtype=torch.int64) data["end_positions"] = end_positions return data def data_gen_for_token_classification(): # token classification data gen # `labels` is the type not the token id for token classification, 0 or 1 data = data_gen() data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 1]], dtype=torch.int64) return data def data_gen_for_sequence_classification(): # sequence classification data gen data = data_gen() data["labels"] = torch.tensor([1], dtype=torch.int64) return data def date_gen_for_double_heads(): num_choices = 2 batch_size = 2 input_ids = torch.tensor( [[46, 11, 616, 432, 318, 19, 318, 555], [777, 11, 235, 333, 318, 231, 468, 136]], dtype=torch.int64, ) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) mc_labels = torch.zeros(input_ids.shape[0], dtype=torch.int64) mc_token_ids = torch.arange(0, num_choices, dtype=torch.int64) mc_token_ids = mc_token_ids.expand((batch_size, num_choices)) multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, num_choices, -1).contiguous() multiple_choice_input_mask = attention_mask.unsqueeze(1).expand(-1, num_choices, -1).contiguous() inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "labels": multiple_choice_inputs_ids, "mc_labels": mc_labels, } return inputs # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn_for_gpt2_model = lambda x: torch.nn.functional.mse_loss( x["last_hidden_state"], torch.ones_like(x["last_hidden_state"]) ) loss_fn = lambda x: x["loss"] config = transformers.GPT2Config( n_layer=2, n_head=4, n_embd=128, vocab_size=1024, attn_pdrop=0, embd_pdrop=0, resid_pdrop=0, summary_first_dropout=0, hidden_dropout=0, problem_type="single_label_classification", pad_token_id=1022, tie_word_embeddings=True, ) config_for_token_classification = copy.deepcopy(config) config_for_token_classification.num_labels = 2 # register the following models model_zoo.register( name="transformers_gpt", model_fn=lambda: transformers.GPT2Model(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_gpt2_model, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gpt_lm", model_fn=lambda: transformers.GPT2LMHeadModel(config), data_gen_fn=data_gen_for_lm, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gpt_double_heads", model_fn=lambda: transformers.GPT2DoubleHeadsModel(config), data_gen_fn=date_gen_for_double_heads, output_transform_fn=output_transform_fn, loss_fn=lambda x: x.loss + x.mc_loss, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gpt_for_question_answering", model_fn=lambda: transformers.GPT2ForQuestionAnswering(config), data_gen_fn=data_gen_for_question_answering, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gpt_for_token_classification", model_fn=lambda: transformers.GPT2ForTokenClassification(config_for_token_classification), data_gen_fn=data_gen_for_token_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_gpt_for_sequence_classification", model_fn=lambda: transformers.GPT2ForSequenceClassification(config_for_token_classification), data_gen_fn=data_gen_for_sequence_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True), )