Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

122 lines
4.4 KiB

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register Bloom
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import BloomTokenizer
# input = 'Hello, my dog is cute'
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[59414, 15, 2670, 35433, 632, 207595, 632, 207595]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data["labels"] = data["input_ids"].clone()
return data
def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64)
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data["labels"] = torch.tensor([0], dtype=torch.int64)
return data
def data_gen_for_question_answering():
# obtained with the following code
#
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
# question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
# inputs = tokenizer(question, text, return_tensors="pt")
input_ids = torch.tensor(
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]],
dtype=torch.int64,
)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
start_positions = torch.tensor([1], dtype=torch.int64)
end_positions = torch.tensor([10], dtype=torch.int64)
return dict(
input_ids=input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions
)
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss(
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"])
)
loss_fn_for_causal_lm = lambda x: x["loss"]
loss_fn_for_classification = lambda x: x["loss"]
loss_fn_for_question_answering = lambda x: x["loss"]
config = transformers.BloomConfig(
n_layer=2, n_head=4, vocab_size=250880, hidden_dropout=0, attention_dropout=0, hidden_size=64, pad_token_id=50256
)
# register the following models
model_zoo.register(
name="transformers_bloom",
model_fn=lambda: transformers.BloomModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_bloom_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bloom_for_causal_lm",
model_fn=lambda: transformers.BloomForCausalLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_causal_lm,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bloom_for_sequence_classification",
model_fn=lambda: transformers.BloomForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bloom_for_token_classification",
model_fn=lambda: transformers.BloomForTokenClassification(config),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_bloom_for_question_answering",
model_fn=lambda: transformers.BloomForQuestionAnswering(config),
data_gen_fn=data_gen_for_question_answering,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_question_answering,
model_attribute=ModelAttribute(has_control_flow=True),
)