mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.4 KiB
122 lines
4.4 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register Bloom |
|
# =============================== |
|
|
|
|
|
def data_gen(): |
|
# Generated from following code snippet |
|
# |
|
# from transformers import BloomTokenizer |
|
# input = 'Hello, my dog is cute' |
|
# tokenized_input = tokenizer(input, return_tensors='pt') |
|
# input_ids = tokenized_input['input_ids'] |
|
# attention_mask = tokenized_input['attention_mask'] |
|
input_ids = torch.tensor([[59414, 15, 2670, 35433, 632, 207595, 632, 207595]], dtype=torch.int64) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
return dict(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_lm(): |
|
# LM data gen |
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` |
|
data = data_gen() |
|
data["labels"] = data["input_ids"].clone() |
|
return data |
|
|
|
|
|
def data_gen_for_token_classification(): |
|
# token classification data gen |
|
# `labels` is the type not the token id for token classification, 0 or 1 |
|
data = data_gen() |
|
data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64) |
|
return data |
|
|
|
|
|
def data_gen_for_sequence_classification(): |
|
# sequence classification data gen |
|
data = data_gen() |
|
data["labels"] = torch.tensor([0], dtype=torch.int64) |
|
return data |
|
|
|
|
|
def data_gen_for_question_answering(): |
|
# obtained with the following code |
|
# |
|
# from transformers import AutoTokenizer |
|
# tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m") |
|
# question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
# inputs = tokenizer(question, text, return_tensors="pt") |
|
|
|
input_ids = torch.tensor( |
|
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]], |
|
dtype=torch.int64, |
|
) |
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) |
|
start_positions = torch.tensor([1], dtype=torch.int64) |
|
end_positions = torch.tensor([10], dtype=torch.int64) |
|
return dict( |
|
input_ids=input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions |
|
) |
|
|
|
|
|
# define output transform function |
|
output_transform_fn = lambda x: x |
|
|
|
# define loss function |
|
loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss( |
|
x["last_hidden_state"], torch.ones_like(x["last_hidden_state"]) |
|
) |
|
loss_fn_for_causal_lm = lambda x: x["loss"] |
|
loss_fn_for_classification = lambda x: x["loss"] |
|
loss_fn_for_question_answering = lambda x: x["loss"] |
|
|
|
config = transformers.BloomConfig( |
|
n_layer=2, n_head=4, vocab_size=250880, hidden_dropout=0, attention_dropout=0, hidden_size=64, pad_token_id=50256 |
|
) |
|
|
|
# register the following models |
|
model_zoo.register( |
|
name="transformers_bloom", |
|
model_fn=lambda: transformers.BloomModel(config), |
|
data_gen_fn=data_gen, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_bloom_model, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_bloom_for_causal_lm", |
|
model_fn=lambda: transformers.BloomForCausalLM(config), |
|
data_gen_fn=data_gen_for_lm, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_causal_lm, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_bloom_for_sequence_classification", |
|
model_fn=lambda: transformers.BloomForSequenceClassification(config), |
|
data_gen_fn=data_gen_for_sequence_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_classification, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_bloom_for_token_classification", |
|
model_fn=lambda: transformers.BloomForTokenClassification(config), |
|
data_gen_fn=data_gen_for_token_classification, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_classification, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_bloom_for_question_answering", |
|
model_fn=lambda: transformers.BloomForQuestionAnswering(config), |
|
data_gen_fn=data_gen_for_question_answering, |
|
output_transform_fn=output_transform_fn, |
|
loss_fn=loss_fn_for_question_answering, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|