import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register Bloom # =============================== def data_gen(): # Generated from following code snippet # # from transformers import BloomTokenizer # input = 'Hello, my dog is cute' # tokenized_input = tokenizer(input, return_tensors='pt') # input_ids = tokenized_input['input_ids'] # attention_mask = tokenized_input['attention_mask'] input_ids = torch.tensor([[59414, 15, 2670, 35433, 632, 207595, 632, 207595]], dtype=torch.int64) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) return dict(input_ids=input_ids, attention_mask=attention_mask) def data_gen_for_lm(): # LM data gen # the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels` data = data_gen() data["labels"] = data["input_ids"].clone() return data def data_gen_for_token_classification(): # token classification data gen # `labels` is the type not the token id for token classification, 0 or 1 data = data_gen() data["labels"] = torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0]], dtype=torch.int64) return data def data_gen_for_sequence_classification(): # sequence classification data gen data = data_gen() data["labels"] = torch.tensor([0], dtype=torch.int64) return data def data_gen_for_question_answering(): # obtained with the following code # # from transformers import AutoTokenizer # tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m") # question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" # inputs = tokenizer(question, text, return_tensors="pt") input_ids = torch.tensor( [[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161, 48946, 18161]], dtype=torch.int64, ) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64) start_positions = torch.tensor([1], dtype=torch.int64) end_positions = torch.tensor([10], dtype=torch.int64) return dict( input_ids=input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions ) # define output transform function output_transform_fn = lambda x: x # define loss function loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss( x["last_hidden_state"], torch.ones_like(x["last_hidden_state"]) ) loss_fn_for_causal_lm = lambda x: x["loss"] loss_fn_for_classification = lambda x: x["loss"] loss_fn_for_question_answering = lambda x: x["loss"] config = transformers.BloomConfig( n_layer=2, n_head=4, vocab_size=250880, hidden_dropout=0, attention_dropout=0, hidden_size=64, pad_token_id=50256 ) # register the following models model_zoo.register( name="transformers_bloom", model_fn=lambda: transformers.BloomModel(config), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_bloom_model, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_bloom_for_causal_lm", model_fn=lambda: transformers.BloomForCausalLM(config), data_gen_fn=data_gen_for_lm, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_causal_lm, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_bloom_for_sequence_classification", model_fn=lambda: transformers.BloomForSequenceClassification(config), data_gen_fn=data_gen_for_sequence_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_classification, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_bloom_for_token_classification", model_fn=lambda: transformers.BloomForTokenClassification(config), data_gen_fn=data_gen_for_token_classification, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_classification, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_bloom_for_question_answering", model_fn=lambda: transformers.BloomForQuestionAnswering(config), data_gen_fn=data_gen_for_question_answering, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_question_answering, model_attribute=ModelAttribute(has_control_flow=True), )