mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.7 KiB
104 lines
3.7 KiB
import torch |
|
import transformers |
|
|
|
from ..registry import ModelAttribute, model_zoo |
|
|
|
# =============================== |
|
# Register single-sentence ALBERT |
|
# =============================== |
|
BATCH_SIZE = 2 |
|
SEQ_LENGTH = 16 |
|
|
|
|
|
def data_gen_fn(): |
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) |
|
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) |
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) |
|
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) |
|
|
|
|
|
def data_gen_for_pretrain(): |
|
inputs = data_gen_fn() |
|
inputs["labels"] = inputs["input_ids"].clone() |
|
inputs["sentence_order_label"] = torch.zeros(BATCH_SIZE, dtype=torch.int64) |
|
return inputs |
|
|
|
|
|
output_transform_fn = lambda x: x |
|
|
|
config = transformers.AlbertConfig( |
|
embedding_size=128, hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256 |
|
) |
|
|
|
model_zoo.register( |
|
name="transformers_albert", |
|
model_fn=lambda: transformers.AlbertModel(config, add_pooling_layer=False), |
|
data_gen_fn=data_gen_fn, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_albert_for_pretraining", |
|
model_fn=lambda: transformers.AlbertForPreTraining(config), |
|
data_gen_fn=data_gen_for_pretrain, |
|
output_transform_fn=lambda x: dict(loss=x.loss), |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_albert_for_masked_lm", |
|
model_fn=lambda: transformers.AlbertForMaskedLM(config), |
|
data_gen_fn=data_gen_fn, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_albert_for_sequence_classification", |
|
model_fn=lambda: transformers.AlbertForSequenceClassification(config), |
|
data_gen_fn=data_gen_fn, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_albert_for_token_classification", |
|
model_fn=lambda: transformers.AlbertForTokenClassification(config), |
|
data_gen_fn=data_gen_fn, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
|
|
# =============================== |
|
# Register multi-sentence ALBERT |
|
# =============================== |
|
|
|
|
|
def data_gen_for_qa(): |
|
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") |
|
inputs = tokenizer(question, text, return_tensors="pt") |
|
return inputs |
|
|
|
|
|
def data_gen_for_mcq(): |
|
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." |
|
choice0 = "It is eaten with a fork and a knife." |
|
choice1 = "It is eaten while held in the hand." |
|
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") |
|
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) |
|
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()} |
|
return encoding |
|
|
|
|
|
model_zoo.register( |
|
name="transformers_albert_for_question_answering", |
|
model_fn=lambda: transformers.AlbertForQuestionAnswering(config), |
|
data_gen_fn=data_gen_for_qa, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
) |
|
model_zoo.register( |
|
name="transformers_albert_for_multiple_choice", |
|
model_fn=lambda: transformers.AlbertForMultipleChoice(config), |
|
data_gen_fn=data_gen_for_mcq, |
|
output_transform_fn=output_transform_fn, |
|
model_attribute=ModelAttribute(has_control_flow=True), |
|
)
|
|
|