import torch import transformers from ..registry import ModelAttribute, model_zoo # =============================== # Register single-sentence ALBERT # =============================== BATCH_SIZE = 2 SEQ_LENGTH = 16 def data_gen_fn(): input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) def data_gen_for_pretrain(): inputs = data_gen_fn() inputs["labels"] = inputs["input_ids"].clone() inputs["sentence_order_label"] = torch.zeros(BATCH_SIZE, dtype=torch.int64) return inputs output_transform_fn = lambda x: x config = transformers.AlbertConfig( embedding_size=128, hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256 ) model_zoo.register( name="transformers_albert", model_fn=lambda: transformers.AlbertModel(config, add_pooling_layer=False), data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_albert_for_pretraining", model_fn=lambda: transformers.AlbertForPreTraining(config), data_gen_fn=data_gen_for_pretrain, output_transform_fn=lambda x: dict(loss=x.loss), model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_albert_for_masked_lm", model_fn=lambda: transformers.AlbertForMaskedLM(config), data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_albert_for_sequence_classification", model_fn=lambda: transformers.AlbertForSequenceClassification(config), data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_albert_for_token_classification", model_fn=lambda: transformers.AlbertForTokenClassification(config), data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), ) # =============================== # Register multi-sentence ALBERT # =============================== def data_gen_for_qa(): question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") inputs = tokenizer(question, text, return_tensors="pt") return inputs def data_gen_for_mcq(): prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." choice0 = "It is eaten with a fork and a knife." choice1 = "It is eaten while held in the hand." tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased") encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) encoding = {k: v.unsqueeze(0) for k, v in encoding.items()} return encoding model_zoo.register( name="transformers_albert_for_question_answering", model_fn=lambda: transformers.AlbertForQuestionAnswering(config), data_gen_fn=data_gen_for_qa, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), ) model_zoo.register( name="transformers_albert_for_multiple_choice", model_fn=lambda: transformers.AlbertForMultipleChoice(config), data_gen_fn=data_gen_for_mcq, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True), )