mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5.1 KiB
5.1 KiB
配置文件
下方代码块中的示例展示了如何在CIFAR10数据集上使用ColossalAI训练ViT模型。
# build train_dataset and train_dataloader from this dictionary
# It is not compulsory in Config File, instead, you can input this dictionary as an argument into colossalai.initialize()
train_data = dict(
# dictionary for building Dataset
dataset=dict(
# the type CIFAR10Dataset has to be registered
type='CIFAR10Dataset',
root='/path/to/data',
# transform pipeline
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='RandomCrop', size=IMG_SIZE, padding=4),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]),
]
),
# dictionary for building Dataloader
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
# num_workers=1,
shuffle=True,
)
)
# build test_dataset and test_dataloader from this dictionary
test_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root='/path/to/data',
train=False,
transform_pipeline=[
dict(type='Resize', size=IMG_SIZE),
dict(type='ToTensor'),
dict(type='Normalize',
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]
),
]
),
dataloader=dict(
batch_size=BATCH_SIZE,
pin_memory=True,
# num_workers=1,
)
)
# compulsory
# build optimizer from this dictionary
optimizer = dict(
# Avaluable types: 'ZeroRedundancyOptimizer_Level_1', 'ZeroRedundancyOptimizer_Level_2', 'ZeroRedundancyOptimizer_Level_3'
# 'Adam', 'Lamb', 'SGD', 'FusedLAMB', 'FusedAdam', 'FusedSGD', 'FP16Optimizer'
type='Adam',
lr=0.001,
weight_decay=0
)
# compulsory
# build loss function from this dictionary
loss = dict(
# Avaluable types:
# 'CrossEntropyLoss2D', 'CrossEntropyLoss2p5D', 'CrossEntropyLoss3D'
type='CrossEntropyLoss2D',
)
# compulsory
# build model from this dictionary
model = dict(
# types avaluable: 'PretrainBERT', 'VanillaResNet', 'VisionTransformerFromConfig'
type='VisionTransformerFromConfig',
# each key-value pair above refers to a layer
# input data pass through these layers recursively
tensor_splitting_cfg=dict(
type='ViTInputSplitter2D',
),
embedding_cfg=dict(
type='ViTPatchEmbedding2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
),
token_fusion_cfg=dict(
type='ViTTokenFuser2D',
img_size=IMG_SIZE,
patch_size=PATCH_SIZE,
embed_dim=DIM,
drop_rate=0.1
),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
block_cfg=dict(
# ViTBlock is a submodule
type='ViTBlock',
attention_cfg=dict(
type='ViTSelfAttention2D',
hidden_size=DIM,
num_attention_heads=NUM_ATTENTION_HEADS,
attention_dropout_prob=0.,
hidden_dropout_prob=0.1,
checkpoint=True
),
droppath_cfg=dict(
type='VanillaViTDropPath',
),
mlp_cfg=dict(
type='ViTMLP2D',
in_features=DIM,
dropout_prob=0.1,
mlp_ratio=4,
checkpoint=True
),
norm_cfg=dict(
type='LayerNorm2D',
normalized_shape=DIM,
eps=1e-6,
),
),
head_cfg=dict(
type='ViTHead2D',
hidden_size=DIM,
num_classes=NUM_CLASSES,
),
embed_dim=DIM,
depth=DEPTH,
drop_path_rate=0.,
)
# hooks are built when initializing trainer
# possible hooks: 'BaseHook', 'MetricHook','LoadCheckpointHook'
# 'SaveCheckpointHook','LossHook', 'AccuracyHook', 'Accuracy2DHook'
# 'LogMetricByEpochHook', 'TensorboardHook','LogTimingByEpochHook', 'LogMemoryByEpochHook'
hooks = [
dict(type='LogMetricByEpochHook'),
dict(type='LogTimingByEpochHook'),
dict(type='LogMemoryByEpochHook'),
dict(type='Accuracy2DHook'),
dict(type='LossHook'),
# dict(type='TensorboardHook', log_dir='./tfb_logs'),
# dict(type='SaveCheckpointHook', interval=5, checkpoint_dir='./ckpt'),
# dict(type='LoadCheckpointHook', epoch=20, checkpoint_dir='./ckpt')
]
# three keys: pipeline, tensor, data
# if data=dict(size=1), which means no data parallelization, then there is no need to define it
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=4, mode='2d'),
)
# not compulsory
# pipeline or no pipeline schedule
fp16 = dict(
mode=AMP_TYPE.PARALLEL,
initial_scale=2 ** 8
)
# not compulsory
# build learning rate scheduler
lr_scheduler = dict(
type='LinearWarmupLR',
warmup_epochs=5
)
schedule = dict(
num_microbatches=8
)
# training stopping criterion
# you can give num_steps or num_epochs
num_epochs = 60
# config logging path
logging = dict(
root_path='./logs'
)