mirror of https://github.com/hpcaitech/ColossalAI
95 lines
4.1 KiB
Markdown
95 lines
4.1 KiB
Markdown
# booster 使用
|
||
|
||
作者: [Mingyan Jiang](https://github.com/jiangmingyan), [Jianghai Chen](https://github.com/CjhHa1), [Baizhou Zhang](https://github.com/Fridge003)
|
||
|
||
**预备知识:**
|
||
|
||
- [分布式训练](../concepts/distributed_training.md)
|
||
- [Colossal-AI 总览](../concepts/colossalai_overview.md)
|
||
|
||
**示例代码**
|
||
|
||
<!-- update this url-->
|
||
|
||
- [使用 booster 训练](https://github.com/hpcaitech/ColossalAI/blob/main/examples/tutorial/new_api/cifar_resnet)
|
||
|
||
## 简介
|
||
|
||
在我们的新设计中, `colossalai.booster` 代替 `colossalai.initialize` 将特征(例如,模型、优化器、数据加载器)无缝注入到您的训练组件中。 使用 booster API, 您可以更友好地将我们的并行策略整合到待训练模型中. 调用 `colossalai.booster` 是您进入训练流程前的正常操作。
|
||
在下面的章节中,我们将介绍 `colossalai.booster` 是如何工作的以及使用时我们要注意的细节。
|
||
|
||
### Booster 插件
|
||
|
||
Booster 插件是管理并行配置的重要组件(eg:gemini 插件封装了 gemini 加速方案)。目前支持的插件如下:
|
||
|
||
**_HybridParallelPlugin:_** HybirdParallelPlugin 插件封装了混合并行的加速解决方案。它提供的接口可以在张量并行,流水线并行以及两种数据并行方法(DDP, Zero)间进行任意的组合。
|
||
|
||
**_GeminiPlugin:_** GeminiPlugin 插件封装了 gemini 加速解决方案,即基于块内存管理的 ZeRO 优化方案。
|
||
|
||
**_TorchDDPPlugin:_** TorchDDPPlugin 插件封装了Pytorch的DDP加速方案,实现了模型级别的数据并行,可以跨多机运行。
|
||
|
||
**_LowLevelZeroPlugin:_** LowLevelZeroPlugin 插件封装了零冗余优化器的 1/2 阶段。阶段 1:切分优化器参数,分发到各并发进程或并发 GPU 上。阶段 2:切分优化器参数及梯度,分发到各并发进程或并发 GPU 上。
|
||
|
||
**_TorchFSDPPlugin:_** TorchFSDPPlugin封装了 Pytorch的FSDP加速方案,可以用于零冗余优化器数据并行(ZeroDP)的训练。
|
||
|
||
若想了解更多关于插件的用法细节,请参考[Booster 插件](./booster_plugins.md)章节。
|
||
|
||
### Booster 接口
|
||
|
||
<!--TODO: update autodoc -->
|
||
|
||
{{ autodoc:colossalai.booster.Booster }}
|
||
|
||
## 使用方法及示例
|
||
|
||
在使用 colossalai 训练时,首先需要在训练脚本的开头启动分布式环境,并创建需要使用的模型、优化器、损失函数、数据加载器等对象。之后,调用`booster.boost` 将特征注入到这些对象中,您就可以使用我们的 booster API 去进行您接下来的训练流程。
|
||
|
||
以下是一个伪代码示例,将展示如何使用我们的 booster API 进行模型训练:
|
||
|
||
```python
|
||
import torch
|
||
from torch.optim import SGD
|
||
from torchvision.models import resnet18
|
||
|
||
import colossalai
|
||
from colossalai.booster import Booster
|
||
from colossalai.booster.plugin import TorchDDPPlugin
|
||
|
||
def train():
|
||
# launch colossalai
|
||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||
|
||
# create plugin and objects for training
|
||
plugin = TorchDDPPlugin()
|
||
booster = Booster(plugin=plugin)
|
||
model = resnet18()
|
||
criterion = lambda x: x.mean()
|
||
optimizer = SGD((model.parameters()), lr=0.001)
|
||
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)
|
||
|
||
# use booster.boost to wrap the training objects
|
||
model, optimizer, criterion, _, scheduler = booster.boost(model, optimizer, criterion, lr_scheduler=scheduler)
|
||
|
||
# do training as normal, except that the backward should be called by booster
|
||
x = torch.randn(4, 3, 224, 224)
|
||
x = x.to('cuda')
|
||
output = model(x)
|
||
loss = criterion(output)
|
||
booster.backward(loss, optimizer)
|
||
optimizer.clip_grad_by_norm(1.0)
|
||
optimizer.step()
|
||
scheduler.step()
|
||
optimizer.zero_grad()
|
||
|
||
# checkpointing using booster api
|
||
save_path = "./model"
|
||
booster.save_model(model, save_path, shard=True, size_per_shard=10, use_safetensors=True)
|
||
|
||
new_model = resnet18()
|
||
booster.load_model(new_model, save_path)
|
||
```
|
||
|
||
更多的Booster设计细节请参考这一[页面](https://github.com/hpcaitech/ColossalAI/discussions/3046)
|
||
|
||
<!-- doc-test-command: torchrun --standalone --nproc_per_node=1 booster_api.py -->
|