mirror of https://github.com/hpcaitech/ColossalAI
88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
import torch
|
|
|
|
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
|
from colossalai.kernel.triton import rms_layernorm
|
|
|
|
try:
|
|
import triton # noqa
|
|
except ImportError:
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
inference_ops = InferenceOpsLoader().load()
|
|
|
|
# Triton benchmark plot attributions
|
|
configs = [
|
|
triton.testing.Benchmark(
|
|
x_names=["SEQUENCE_TOTAL"],
|
|
x_vals=[i for i in range(128, 1025, 128)],
|
|
line_arg="provider",
|
|
line_vals=[
|
|
"vllm_rms_layernorm",
|
|
"triton_rms_layernorm",
|
|
"cuda_rms_layernorm",
|
|
"vllm_rms_layernorm_with_residual",
|
|
"triton_rms_layernorm_with_residual",
|
|
"cuda_rms_layernorm_with_residual",
|
|
],
|
|
line_names=[
|
|
"vllm_rms_layernorm",
|
|
"triton_rms_layernorm",
|
|
"cuda_rms_layernorm",
|
|
"vllm_rms_layernorm_with_residual",
|
|
"triton_rms_layernorm_with_residual",
|
|
"cuda_rms_layernorm_with_residual",
|
|
],
|
|
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("red", "--"), ("blue", "--"), ("yellow", "--")],
|
|
ylabel="ms",
|
|
plot_name=f"RMSNorm benchmarking results",
|
|
args={"HIDDEN_SIZE": 5120},
|
|
)
|
|
]
|
|
|
|
|
|
@triton.testing.perf_report(configs)
|
|
def benchmark_rms_layernorm(
|
|
provider: str,
|
|
SEQUENCE_TOTAL: int,
|
|
HIDDEN_SIZE: int,
|
|
):
|
|
try:
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
except ImportError:
|
|
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
|
|
|
|
warmup = 10
|
|
rep = 1000
|
|
|
|
dtype = torch.float16
|
|
eps = 1e-5
|
|
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
|
|
w_shape = (x_shape[-1],)
|
|
residual = torch.rand(x_shape, dtype=dtype, device="cuda")
|
|
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
|
|
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE, eps=eps).to(dtype=dtype, device="cuda")
|
|
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
|
|
if provider == "vllm_rms_layernorm":
|
|
fn = lambda: vllm_norm(x)
|
|
elif provider == "triton_rms_layernorm":
|
|
fn = lambda: rms_layernorm(x, weight, eps=eps)
|
|
elif provider == "cuda_rms_layernorm":
|
|
out = torch.empty_like(x)
|
|
fn = lambda: inference_ops.rms_layernorm(out, x, weight, eps)
|
|
elif provider == "vllm_rms_layernorm_with_residual":
|
|
fn = lambda: vllm_norm(x, residual=residual)
|
|
elif provider == "triton_rms_layernorm_with_residual":
|
|
fn = lambda: rms_layernorm(x, weight, eps=eps, residual=residual)
|
|
elif provider == "cuda_rms_layernorm_with_residual":
|
|
fn = lambda: inference_ops.fused_add_rms_layernorm(x, residual, weight, eps)
|
|
else:
|
|
raise ValueError("Undefined provider.")
|
|
|
|
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
|
|
|
return ms
|
|
|
|
|
|
if __name__ == "__main__":
|
|
benchmark_rms_layernorm.run(save_path=".", print_data=True)
|