ColossalAI/examples/inference/benchmark_ops/benchmark_rmsnorm.py

88 lines
2.9 KiB
Python
Raw Normal View History

import torch
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from colossalai.kernel.triton import rms_layernorm
try:
import triton # noqa
except ImportError:
print("please install triton from https://github.com/openai/triton")
inference_ops = InferenceOpsLoader().load()
# Triton benchmark plot attributions
configs = [
triton.testing.Benchmark(
x_names=["SEQUENCE_TOTAL"],
x_vals=[i for i in range(128, 1025, 128)],
line_arg="provider",
line_vals=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"cuda_rms_layernorm",
"vllm_rms_layernorm_with_residual",
"triton_rms_layernorm_with_residual",
"cuda_rms_layernorm_with_residual",
],
line_names=[
"vllm_rms_layernorm",
"triton_rms_layernorm",
"cuda_rms_layernorm",
"vllm_rms_layernorm_with_residual",
"triton_rms_layernorm_with_residual",
"cuda_rms_layernorm_with_residual",
],
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("red", "--"), ("blue", "--"), ("yellow", "--")],
ylabel="ms",
plot_name=f"RMSNorm benchmarking results",
args={"HIDDEN_SIZE": 5120},
)
]
@triton.testing.perf_report(configs)
def benchmark_rms_layernorm(
provider: str,
SEQUENCE_TOTAL: int,
HIDDEN_SIZE: int,
):
try:
from vllm.model_executor.layers.layernorm import RMSNorm
except ImportError:
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
warmup = 10
rep = 1000
dtype = torch.float16
eps = 1e-5
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
w_shape = (x_shape[-1],)
residual = torch.rand(x_shape, dtype=dtype, device="cuda")
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE, eps=eps).to(dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
if provider == "vllm_rms_layernorm":
fn = lambda: vllm_norm(x)
elif provider == "triton_rms_layernorm":
fn = lambda: rms_layernorm(x, weight, eps=eps)
elif provider == "cuda_rms_layernorm":
out = torch.empty_like(x)
fn = lambda: inference_ops.rms_layernorm(out, x, weight, eps)
elif provider == "vllm_rms_layernorm_with_residual":
fn = lambda: vllm_norm(x, residual=residual)
elif provider == "triton_rms_layernorm_with_residual":
fn = lambda: rms_layernorm(x, weight, eps=eps, residual=residual)
elif provider == "cuda_rms_layernorm_with_residual":
fn = lambda: inference_ops.fused_add_rms_layernorm(x, residual, weight, eps)
else:
raise ValueError("Undefined provider.")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
benchmark_rms_layernorm.run(save_path=".", print_data=True)