mirror of https://github.com/hpcaitech/ColossalAI
566 lines
31 KiB
Python
566 lines
31 KiB
Python
import operator
|
|
from functools import reduce
|
|
import warnings
|
|
import torch
|
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
|
from .operator_handler import OperatorHandler
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
from copy import deepcopy
|
|
from typing import Dict, List
|
|
from colossalai.auto_parallel.solver._utils import exception_handler
|
|
|
|
__all__ = ['BcastOpHandler']
|
|
|
|
|
|
class BcastOpHandler(OperatorHandler):
|
|
"""
|
|
An OperatorHandler which deals with the sharding strategies of broadcast operators(such as operator.add).
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
assert len(self.predecessor_node) == 2
|
|
self.lhs_data = self.predecessor_node[0]._meta_data
|
|
self.rhs_data = self.predecessor_node[1]._meta_data
|
|
self.lhs = self.predecessor_node[0]
|
|
self.rhs = self.predecessor_node[1]
|
|
self.output_data = self.node._meta_data
|
|
|
|
def _generate_sharding_spec(self, input_: torch.Tensor, dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
|
|
shape = list(input_.shape)
|
|
|
|
# padding the shape to the same length as output_data
|
|
while len(shape) < self.output_data.dim():
|
|
shape.insert(0, 1)
|
|
shape = torch.Size(shape)
|
|
|
|
# if the sharding happens on a size one dimension, we should record it as R.
|
|
processed_dim_partition_dict = deepcopy(dim_partition_dict)
|
|
for dim_index, _ in dim_partition_dict.items():
|
|
if shape[dim_index] == 1:
|
|
processed_dim_partition_dict.pop(dim_index)
|
|
sharding_spec = ShardingSpec(device_mesh=self.device_mesh,
|
|
entire_shape=shape,
|
|
dim_partition_dict=processed_dim_partition_dict)
|
|
|
|
return sharding_spec
|
|
|
|
def _generate_compute_cost(self, total_sharding_size):
|
|
lhs_matrix_shape = self.lhs_data.shape[-2:]
|
|
rhs_matrix_shape = self.rhs_data.shape[-2:]
|
|
batch_dimensions_shape = self.output_data.shape[:-2]
|
|
batch_dimensions_product = reduce(operator.mul, batch_dimensions_shape, 1)
|
|
compute_cost = reduce(
|
|
operator.mul, lhs_matrix_shape) * rhs_matrix_shape[0] * batch_dimensions_product * 2 / total_sharding_size
|
|
return compute_cost
|
|
|
|
def _generate_resharding_costs(self, sharding_specs):
|
|
# The resharding_cost of weight is counted due to sharing weight cases.
|
|
dtype = self.node._meta_data.dtype
|
|
nodes = self.predecessor_node
|
|
resharding_costs = {}
|
|
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
|
|
|
|
# shape consistency manager is a singleton class
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
for input_node, input_spec in zip(nodes, sharding_specs):
|
|
resharding_costs[input_node] = []
|
|
for strategy in input_node.strategies_vector:
|
|
input_sharding_spec = strategy.output_sharding_spec
|
|
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
|
|
# if the input shape is smaller than the target input, we will fill the input to the same length as target.
|
|
# Then, use the padded input sharding spec to compute the resharding cost.
|
|
if len(input_sharding_spec.entire_shape) < len(input_spec.entire_shape):
|
|
new_entire_shape = list(input_sharding_spec.entire_shape)
|
|
while len(new_entire_shape) < len(input_spec.entire_shape):
|
|
new_entire_shape.insert(0, 1)
|
|
new_entire_shape = torch.Size(new_entire_shape)
|
|
new_device_mesh = input_sharding_spec.device_mesh
|
|
new_dim_partition_dict = input_sharding_spec.dim_partition_dict
|
|
input_sharding_spec = ShardingSpec(device_mesh=new_device_mesh,
|
|
entire_shape=new_entire_shape,
|
|
dim_partition_dict=new_dim_partition_dict)
|
|
|
|
# compute the resharding cost during forward phase
|
|
_, _, resharding_cost_forward = shape_consistency_manager.shape_consistency(
|
|
input_sharding_spec, input_spec)
|
|
|
|
_, _, resharding_cost_backward = shape_consistency_manager.shape_consistency(
|
|
input_spec, input_sharding_spec)
|
|
total_resharding_cost = resharding_cost_forward + resharding_cost_backward
|
|
|
|
# we need multiply the size of elem dtype to get correct communication cost
|
|
resharding_cost = total_resharding_cost * size_per_elem_bytes
|
|
resharding_costs[input_node].append(resharding_cost)
|
|
|
|
return resharding_costs
|
|
|
|
def _convert_partition_dict_to_sharding_spec(self, dim_partition_list):
|
|
|
|
sharding_spec_list = []
|
|
check_duplicated_list = []
|
|
for output_dim_partition_dict in dim_partition_list:
|
|
output_sharding_spec = self._generate_sharding_spec(self.output_data, output_dim_partition_dict)
|
|
sharding_seq = output_sharding_spec.sharding_sequence
|
|
if sharding_seq not in check_duplicated_list:
|
|
check_duplicated_list.append(sharding_seq)
|
|
sharding_spec_list.append(output_sharding_spec)
|
|
|
|
return sharding_spec_list
|
|
|
|
def _enumerate_all_possible_2d_sharding(self, mesh_dim_0, mesh_dim_1, dim_size):
|
|
dim_partition_list = []
|
|
# enumerate all the 2D sharding cases
|
|
for i in range(dim_size):
|
|
for j in range(i + 1, dim_size):
|
|
dim_partition_dict_0 = {i: [mesh_dim_0], j: [mesh_dim_1]}
|
|
dim_partition_dict_1 = {i: [mesh_dim_1], j: [mesh_dim_0]}
|
|
dim_partition_list.append(dim_partition_dict_0)
|
|
dim_partition_list.append(dim_partition_dict_1)
|
|
for i in range(dim_size):
|
|
dim_partition_dict_flatten = {i: [mesh_dim_0, mesh_dim_1]}
|
|
dim_partition_list.append(dim_partition_dict_flatten)
|
|
|
|
# sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list)
|
|
return dim_partition_list
|
|
|
|
def _enumerate_all_possible_1d_sharding(self, mesh_dim_0, dim_size):
|
|
dim_partition_list = []
|
|
# enumerate all the 1D sharding cases
|
|
for i in range(dim_size):
|
|
dim_partition_dict_0 = {i: [mesh_dim_0]}
|
|
dim_partition_list.append(dim_partition_dict_0)
|
|
|
|
# sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list)
|
|
return dim_partition_list
|
|
|
|
def _enumerate_all_possible_output(self, mesh_dim_0, mesh_dim_1):
|
|
# use mesh_dim_0, mesh_dim_1 instead of constant 0, 1 in here for N-D device mesh scaliablity.
|
|
|
|
output_dim_partition_list = []
|
|
dim_size = self.output_data.dim()
|
|
# enumerate all the 2D sharding cases
|
|
sharding_list_2d = self._enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size)
|
|
output_dim_partition_list.extend(sharding_list_2d)
|
|
|
|
# enumerate all the 1D sharding cases
|
|
sharding_list_1d_on_dim_0 = self._enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size)
|
|
output_dim_partition_list.extend(sharding_list_1d_on_dim_0)
|
|
sharding_list_1d_on_dim_1 = self._enumerate_all_possible_1d_sharding(mesh_dim_1, dim_size)
|
|
output_dim_partition_list.extend(sharding_list_1d_on_dim_1)
|
|
|
|
# add empty dict for fully replicated case
|
|
output_dim_partition_list.append({})
|
|
output_sharding_spec_list = self._convert_partition_dict_to_sharding_spec(output_dim_partition_list)
|
|
|
|
return output_sharding_spec_list
|
|
|
|
@exception_handler
|
|
def _register_strategy(self, output_sharding_spec):
|
|
dim_partition_dict_for_input = output_sharding_spec.dim_partition_dict
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_input)
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_input)
|
|
|
|
name = f'{output_sharding_spec.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
dim_partition_dict_for_output = output_sharding_spec.dim_partition_dict
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the computation cost of this strategy
|
|
sharding_dims = []
|
|
for mesh_dims in dim_partition_dict_for_output.values():
|
|
for mesh_dim in mesh_dims:
|
|
sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
sharding_size = reduce(operator.mul, sharding_dims, 1)
|
|
memory_cost = self.output_data.numel() / sharding_size
|
|
compute_cost = memory_cost
|
|
communication_cost = 0
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=output_sharding_spec,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
##############################################
|
|
#used to generate strategies for torch.matmul#
|
|
##############################################
|
|
# @exception_handler
|
|
def _registry_no_split_strategies_for_matmul(self, dim_partition_dict_for_batch_dim):
|
|
# this dim partition dict only describes the batch dimensions, but in this scenario,
|
|
# matrix dimensions are fully replicated, so it do not need extra process.
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_batch_dim)
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_batch_dim)
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_batch_dim)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
batch_sharding_dims = []
|
|
for mesh_dims in dim_partition_dict_for_batch_dim.values():
|
|
for mesh_dim in mesh_dims:
|
|
batch_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1)
|
|
# in this case, total_sharding_size is equal to the batch sharding size
|
|
memory_cost = self.output_data.numel() / batch_sharding_size
|
|
|
|
# compute the computation cost of this strategy
|
|
compute_cost = self._generate_compute_cost(batch_sharding_size)
|
|
|
|
# in this case, no communication takes place.
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
communication_cost = 0
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _split_dim_i(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
|
|
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
|
|
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
|
|
# In this scenario, matrix dimensions will be sharded on 'i' dimension.
|
|
|
|
# in this case, the matrix dimensions of lhs is sharded on 'i' dimension.
|
|
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_lhs.update({-2: mesh_dim_on_matrix})
|
|
|
|
# in this case, the matrix dimensions of rhs is fully replicated.
|
|
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
|
|
# in this case, the matrix dimensions of output is sharded on 'i' dimension.
|
|
|
|
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_output.update({-2: mesh_dim_on_matrix})
|
|
|
|
# generate sharding specs
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_dims = []
|
|
|
|
# append batch sharding dims
|
|
for mesh_dims in dim_partition_dict_for_batch_dim.values():
|
|
for mesh_dim in mesh_dims:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
|
|
# append the sharding dims on matrix dimension
|
|
for mesh_dim in mesh_dim_on_matrix:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
|
|
|
|
# in this case, output_data uses all the sharding dims.
|
|
memory_cost = self.output_data.numel() / total_sharding_size
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
communication_cost = 0
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _split_dim_k(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
|
|
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
|
|
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
|
|
# In this scenario, matrix dimensions will be sharded on 'k' dimension.
|
|
|
|
# in this case, the matrix dimensions of lhs is sharded on 'k' dimension.
|
|
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_lhs.update({-1: mesh_dim_on_matrix})
|
|
|
|
# in this case, the matrix dimensions of rhs is sharded on 'k' dimension.
|
|
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_rhs.update({-2: mesh_dim_on_matrix})
|
|
|
|
# in this case, the matrix dimensions of output is fully replicated.
|
|
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
|
|
|
|
# generate sharding specs
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_dims = []
|
|
batch_sharding_dims = []
|
|
# append batch sharding dims
|
|
for mesh_dims in dim_partition_dict_for_batch_dim.values():
|
|
for mesh_dim in mesh_dims:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
batch_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
|
|
# append the sharding dims on matrix dimension
|
|
for mesh_dim in mesh_dim_on_matrix:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1)
|
|
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
|
|
|
|
# in this case, output_data is fully replicated on matrix dimensions.
|
|
memory_cost = self.output_data.numel() / batch_sharding_size
|
|
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
# The communication takes place during forward activation computation.
|
|
if len(mesh_dim_on_matrix) == 1:
|
|
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0])
|
|
else:
|
|
communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0)
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _split_dim_j(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
|
|
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
|
|
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
|
|
# In this scenario, matrix dimensions will be is sharded on 'j' dimension.
|
|
|
|
# in this case, the matrix dimensions of lhs is fully replicated.
|
|
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
|
|
# in this case, the matrix dimensions of rhs is sharded on 'j' dimension.
|
|
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_rhs.update({-1: mesh_dim_on_matrix})
|
|
|
|
# in this case, the matrix dimensions of output is sharded on 'j' dimension.
|
|
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
|
|
dim_partition_dict_for_output.update({-1: mesh_dim_on_matrix})
|
|
|
|
# generate sharding specs
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_dims = []
|
|
|
|
# append batch sharding dims
|
|
for mesh_dims in dim_partition_dict_for_batch_dim.values():
|
|
for mesh_dim in mesh_dims:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
|
|
# append the sharding dims on matrix dimension
|
|
for mesh_dim in mesh_dim_on_matrix:
|
|
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
|
|
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
|
|
|
|
# in this case, output_data uses all the sharding dims.
|
|
memory_cost = self.output_data.numel() / total_sharding_size
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
# The communication takes place during backward activation computation.
|
|
if len(mesh_dim_on_matrix) == 1:
|
|
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0])
|
|
else:
|
|
communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0)
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _registry_1d_strategies_for_matmul(self, dim_partition_dict, mesh_dim_list):
|
|
self._split_dim_i(dim_partition_dict, mesh_dim_list)
|
|
self._split_dim_k(dim_partition_dict, mesh_dim_list)
|
|
self._split_dim_j(dim_partition_dict, mesh_dim_list)
|
|
|
|
def _split_lhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
|
|
dim_partition_dict_for_lhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
|
|
dim_partition_dict_for_rhs = {-2: [mesh_dim_1]}
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
|
|
dim_partition_dict_for_output = {-2: [mesh_dim_0]}
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
|
|
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
|
|
# in this case, output_data uses all the sharding dims.
|
|
memory_cost = self.output_data.numel() / output_sharding_size
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
# The communication takes place during forward activation computation.
|
|
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _split_rhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
|
|
dim_partition_dict_for_lhs = {-1: [mesh_dim_0]}
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
|
|
dim_partition_dict_for_rhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
|
|
dim_partition_dict_for_output = {-1: [mesh_dim_1]}
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
|
|
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
|
|
# in this case, output_data uses all the sharding dims.
|
|
memory_cost = self.output_data.numel() / output_sharding_size
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
# The communication takes place during forward and backward activation computation.
|
|
communication_cost_forward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_0)
|
|
communication_cost_backward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
|
|
communication_cost = communication_cost_backward_activation + communication_cost_forward_activation
|
|
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _split_lhs_space_rhs_space(self, mesh_dim_0, mesh_dim_1):
|
|
dim_partition_dict_for_lhs = {-2: [mesh_dim_0]}
|
|
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
|
|
|
|
dim_partition_dict_for_rhs = {-1: [mesh_dim_1]}
|
|
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
|
|
|
|
dim_partition_dict_for_output = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
|
|
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
|
|
|
|
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
|
|
|
|
# generate resharding cost for this strategy
|
|
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
|
|
|
|
# compute the memory cost of this strategy
|
|
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
|
|
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
|
|
# in this case, output_data uses all the sharding dims.
|
|
memory_cost = self.output_data.numel() / output_sharding_size
|
|
compute_cost = self._generate_compute_cost(total_sharding_size)
|
|
|
|
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
|
|
# The communication takes place during backward activation computation.
|
|
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
|
|
sharding_strategies = ShardingStrategy(name,
|
|
output_sharding_spec=sharding_spec_for_output,
|
|
compute_cost=compute_cost,
|
|
communication_cost=communication_cost,
|
|
memory_cost=memory_cost,
|
|
resharding_costs=resharding_costs,
|
|
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
|
|
|
|
self.strategies_vector.append(sharding_strategies)
|
|
|
|
def _registry_2d_strategies_for_matmul(self):
|
|
self._split_lhs_space_both_contract(0, 1)
|
|
self._split_lhs_space_both_contract(1, 0)
|
|
self._split_rhs_space_both_contract(0, 1)
|
|
self._split_rhs_space_both_contract(1, 0)
|
|
self._split_lhs_space_rhs_space(0, 1)
|
|
self._split_lhs_space_rhs_space(1, 0)
|
|
|
|
def register_strategy(self) -> StrategiesVector:
|
|
MESH_DIM_LIST = [0, 1]
|
|
if self.node.target != torch.matmul:
|
|
output_sharding_specs = self._enumerate_all_possible_output(MESH_DIM_LIST[0], MESH_DIM_LIST[1])
|
|
for output_sharding_spec in output_sharding_specs:
|
|
self._register_strategy(output_sharding_spec)
|
|
else:
|
|
# we only care about the non-computing dimensions,
|
|
# therefore, we omit the last two dimensions.
|
|
dim_size = self.output_data.dim() - 2
|
|
|
|
# Both device mesh axises are uesd on batch dimensions
|
|
dim_partition_dicts_2d = self._enumerate_all_possible_2d_sharding(MESH_DIM_LIST[0], MESH_DIM_LIST[1],
|
|
dim_size)
|
|
for dim_partition_dict in dim_partition_dicts_2d:
|
|
self._registry_no_split_strategies_for_matmul(dim_partition_dict)
|
|
|
|
# Only one device mesh axis is uesd on batch dimensions
|
|
for mesh_dim_index in [0, 1]:
|
|
dim_partition_dicts_1d = self._enumerate_all_possible_1d_sharding(MESH_DIM_LIST[mesh_dim_index],
|
|
dim_size)
|
|
for dim_partition_dict in dim_partition_dicts_1d:
|
|
self._registry_no_split_strategies_for_matmul(dim_partition_dict)
|
|
self._registry_1d_strategies_for_matmul(dim_partition_dict, [MESH_DIM_LIST[mesh_dim_index - 1]])
|
|
|
|
# No device mesh axis is uesd on batch dimensions
|
|
dim_partition_dict_on_batch_dim = {}
|
|
self._registry_no_split_strategies_for_matmul(dim_partition_dict_on_batch_dim)
|
|
self._registry_1d_strategies_for_matmul(dim_partition_dict_on_batch_dim, MESH_DIM_LIST)
|
|
self._registry_2d_strategies_for_matmul()
|