ColossalAI/colossalai/auto_parallel/solver/op_handler/bcast_op_handler.py

566 lines
31 KiB
Python

import operator
from functools import reduce
import warnings
import torch
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from copy import deepcopy
from typing import Dict, List
from colossalai.auto_parallel.solver._utils import exception_handler
__all__ = ['BcastOpHandler']
class BcastOpHandler(OperatorHandler):
"""
An OperatorHandler which deals with the sharding strategies of broadcast operators(such as operator.add).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert len(self.predecessor_node) == 2
self.lhs_data = self.predecessor_node[0]._meta_data
self.rhs_data = self.predecessor_node[1]._meta_data
self.lhs = self.predecessor_node[0]
self.rhs = self.predecessor_node[1]
self.output_data = self.node._meta_data
def _generate_sharding_spec(self, input_: torch.Tensor, dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
shape = list(input_.shape)
# padding the shape to the same length as output_data
while len(shape) < self.output_data.dim():
shape.insert(0, 1)
shape = torch.Size(shape)
# if the sharding happens on a size one dimension, we should record it as R.
processed_dim_partition_dict = deepcopy(dim_partition_dict)
for dim_index, _ in dim_partition_dict.items():
if shape[dim_index] == 1:
processed_dim_partition_dict.pop(dim_index)
sharding_spec = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=shape,
dim_partition_dict=processed_dim_partition_dict)
return sharding_spec
def _generate_compute_cost(self, total_sharding_size):
lhs_matrix_shape = self.lhs_data.shape[-2:]
rhs_matrix_shape = self.rhs_data.shape[-2:]
batch_dimensions_shape = self.output_data.shape[:-2]
batch_dimensions_product = reduce(operator.mul, batch_dimensions_shape, 1)
compute_cost = reduce(
operator.mul, lhs_matrix_shape) * rhs_matrix_shape[0] * batch_dimensions_product * 2 / total_sharding_size
return compute_cost
def _generate_resharding_costs(self, sharding_specs):
# The resharding_cost of weight is counted due to sharing weight cases.
dtype = self.node._meta_data.dtype
nodes = self.predecessor_node
resharding_costs = {}
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
# shape consistency manager is a singleton class
shape_consistency_manager = ShapeConsistencyManager()
for input_node, input_spec in zip(nodes, sharding_specs):
resharding_costs[input_node] = []
for strategy in input_node.strategies_vector:
input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
# if the input shape is smaller than the target input, we will fill the input to the same length as target.
# Then, use the padded input sharding spec to compute the resharding cost.
if len(input_sharding_spec.entire_shape) < len(input_spec.entire_shape):
new_entire_shape = list(input_sharding_spec.entire_shape)
while len(new_entire_shape) < len(input_spec.entire_shape):
new_entire_shape.insert(0, 1)
new_entire_shape = torch.Size(new_entire_shape)
new_device_mesh = input_sharding_spec.device_mesh
new_dim_partition_dict = input_sharding_spec.dim_partition_dict
input_sharding_spec = ShardingSpec(device_mesh=new_device_mesh,
entire_shape=new_entire_shape,
dim_partition_dict=new_dim_partition_dict)
# compute the resharding cost during forward phase
_, _, resharding_cost_forward = shape_consistency_manager.shape_consistency(
input_sharding_spec, input_spec)
_, _, resharding_cost_backward = shape_consistency_manager.shape_consistency(
input_spec, input_sharding_spec)
total_resharding_cost = resharding_cost_forward + resharding_cost_backward
# we need multiply the size of elem dtype to get correct communication cost
resharding_cost = total_resharding_cost * size_per_elem_bytes
resharding_costs[input_node].append(resharding_cost)
return resharding_costs
def _convert_partition_dict_to_sharding_spec(self, dim_partition_list):
sharding_spec_list = []
check_duplicated_list = []
for output_dim_partition_dict in dim_partition_list:
output_sharding_spec = self._generate_sharding_spec(self.output_data, output_dim_partition_dict)
sharding_seq = output_sharding_spec.sharding_sequence
if sharding_seq not in check_duplicated_list:
check_duplicated_list.append(sharding_seq)
sharding_spec_list.append(output_sharding_spec)
return sharding_spec_list
def _enumerate_all_possible_2d_sharding(self, mesh_dim_0, mesh_dim_1, dim_size):
dim_partition_list = []
# enumerate all the 2D sharding cases
for i in range(dim_size):
for j in range(i + 1, dim_size):
dim_partition_dict_0 = {i: [mesh_dim_0], j: [mesh_dim_1]}
dim_partition_dict_1 = {i: [mesh_dim_1], j: [mesh_dim_0]}
dim_partition_list.append(dim_partition_dict_0)
dim_partition_list.append(dim_partition_dict_1)
for i in range(dim_size):
dim_partition_dict_flatten = {i: [mesh_dim_0, mesh_dim_1]}
dim_partition_list.append(dim_partition_dict_flatten)
# sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list)
return dim_partition_list
def _enumerate_all_possible_1d_sharding(self, mesh_dim_0, dim_size):
dim_partition_list = []
# enumerate all the 1D sharding cases
for i in range(dim_size):
dim_partition_dict_0 = {i: [mesh_dim_0]}
dim_partition_list.append(dim_partition_dict_0)
# sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list)
return dim_partition_list
def _enumerate_all_possible_output(self, mesh_dim_0, mesh_dim_1):
# use mesh_dim_0, mesh_dim_1 instead of constant 0, 1 in here for N-D device mesh scaliablity.
output_dim_partition_list = []
dim_size = self.output_data.dim()
# enumerate all the 2D sharding cases
sharding_list_2d = self._enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size)
output_dim_partition_list.extend(sharding_list_2d)
# enumerate all the 1D sharding cases
sharding_list_1d_on_dim_0 = self._enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size)
output_dim_partition_list.extend(sharding_list_1d_on_dim_0)
sharding_list_1d_on_dim_1 = self._enumerate_all_possible_1d_sharding(mesh_dim_1, dim_size)
output_dim_partition_list.extend(sharding_list_1d_on_dim_1)
# add empty dict for fully replicated case
output_dim_partition_list.append({})
output_sharding_spec_list = self._convert_partition_dict_to_sharding_spec(output_dim_partition_list)
return output_sharding_spec_list
@exception_handler
def _register_strategy(self, output_sharding_spec):
dim_partition_dict_for_input = output_sharding_spec.dim_partition_dict
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_input)
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_input)
name = f'{output_sharding_spec.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
dim_partition_dict_for_output = output_sharding_spec.dim_partition_dict
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the computation cost of this strategy
sharding_dims = []
for mesh_dims in dim_partition_dict_for_output.values():
for mesh_dim in mesh_dims:
sharding_dims.append(self.device_mesh.shape[mesh_dim])
sharding_size = reduce(operator.mul, sharding_dims, 1)
memory_cost = self.output_data.numel() / sharding_size
compute_cost = memory_cost
communication_cost = 0
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=output_sharding_spec,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
##############################################
#used to generate strategies for torch.matmul#
##############################################
# @exception_handler
def _registry_no_split_strategies_for_matmul(self, dim_partition_dict_for_batch_dim):
# this dim partition dict only describes the batch dimensions, but in this scenario,
# matrix dimensions are fully replicated, so it do not need extra process.
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_batch_dim)
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_batch_dim)
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_batch_dim)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
batch_sharding_dims = []
for mesh_dims in dim_partition_dict_for_batch_dim.values():
for mesh_dim in mesh_dims:
batch_sharding_dims.append(self.device_mesh.shape[mesh_dim])
batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1)
# in this case, total_sharding_size is equal to the batch sharding size
memory_cost = self.output_data.numel() / batch_sharding_size
# compute the computation cost of this strategy
compute_cost = self._generate_compute_cost(batch_sharding_size)
# in this case, no communication takes place.
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
communication_cost = 0
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _split_dim_i(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
# In this scenario, matrix dimensions will be sharded on 'i' dimension.
# in this case, the matrix dimensions of lhs is sharded on 'i' dimension.
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_lhs.update({-2: mesh_dim_on_matrix})
# in this case, the matrix dimensions of rhs is fully replicated.
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
# in this case, the matrix dimensions of output is sharded on 'i' dimension.
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_output.update({-2: mesh_dim_on_matrix})
# generate sharding specs
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_dims = []
# append batch sharding dims
for mesh_dims in dim_partition_dict_for_batch_dim.values():
for mesh_dim in mesh_dims:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
# append the sharding dims on matrix dimension
for mesh_dim in mesh_dim_on_matrix:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
# in this case, output_data uses all the sharding dims.
memory_cost = self.output_data.numel() / total_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
communication_cost = 0
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _split_dim_k(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
# In this scenario, matrix dimensions will be sharded on 'k' dimension.
# in this case, the matrix dimensions of lhs is sharded on 'k' dimension.
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_lhs.update({-1: mesh_dim_on_matrix})
# in this case, the matrix dimensions of rhs is sharded on 'k' dimension.
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_rhs.update({-2: mesh_dim_on_matrix})
# in this case, the matrix dimensions of output is fully replicated.
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
# generate sharding specs
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_dims = []
batch_sharding_dims = []
# append batch sharding dims
for mesh_dims in dim_partition_dict_for_batch_dim.values():
for mesh_dim in mesh_dims:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
batch_sharding_dims.append(self.device_mesh.shape[mesh_dim])
# append the sharding dims on matrix dimension
for mesh_dim in mesh_dim_on_matrix:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1)
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
# in this case, output_data is fully replicated on matrix dimensions.
memory_cost = self.output_data.numel() / batch_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
# The communication takes place during forward activation computation.
if len(mesh_dim_on_matrix) == 1:
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0])
else:
communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0)
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _split_dim_j(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix):
# A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j]
# this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it.
# In this scenario, matrix dimensions will be is sharded on 'j' dimension.
# in this case, the matrix dimensions of lhs is fully replicated.
dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim)
# in this case, the matrix dimensions of rhs is sharded on 'j' dimension.
dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_rhs.update({-1: mesh_dim_on_matrix})
# in this case, the matrix dimensions of output is sharded on 'j' dimension.
dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim)
dim_partition_dict_for_output.update({-1: mesh_dim_on_matrix})
# generate sharding specs
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_dims = []
# append batch sharding dims
for mesh_dims in dim_partition_dict_for_batch_dim.values():
for mesh_dim in mesh_dims:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
# append the sharding dims on matrix dimension
for mesh_dim in mesh_dim_on_matrix:
total_sharding_dims.append(self.device_mesh.shape[mesh_dim])
total_sharding_size = reduce(operator.mul, total_sharding_dims, 1)
# in this case, output_data uses all the sharding dims.
memory_cost = self.output_data.numel() / total_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
# The communication takes place during backward activation computation.
if len(mesh_dim_on_matrix) == 1:
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0])
else:
communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0)
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _registry_1d_strategies_for_matmul(self, dim_partition_dict, mesh_dim_list):
self._split_dim_i(dim_partition_dict, mesh_dim_list)
self._split_dim_k(dim_partition_dict, mesh_dim_list)
self._split_dim_j(dim_partition_dict, mesh_dim_list)
def _split_lhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
dim_partition_dict_for_lhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
dim_partition_dict_for_rhs = {-2: [mesh_dim_1]}
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
dim_partition_dict_for_output = {-2: [mesh_dim_0]}
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
# in this case, output_data uses all the sharding dims.
memory_cost = self.output_data.numel() / output_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
# The communication takes place during forward activation computation.
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _split_rhs_space_both_contract(self, mesh_dim_0, mesh_dim_1):
dim_partition_dict_for_lhs = {-1: [mesh_dim_0]}
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
dim_partition_dict_for_rhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
dim_partition_dict_for_output = {-1: [mesh_dim_1]}
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
# in this case, output_data uses all the sharding dims.
memory_cost = self.output_data.numel() / output_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
# The communication takes place during forward and backward activation computation.
communication_cost_forward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_0)
communication_cost_backward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
communication_cost = communication_cost_backward_activation + communication_cost_forward_activation
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _split_lhs_space_rhs_space(self, mesh_dim_0, mesh_dim_1):
dim_partition_dict_for_lhs = {-2: [mesh_dim_0]}
sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs)
dim_partition_dict_for_rhs = {-1: [mesh_dim_1]}
sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs)
dim_partition_dict_for_output = {-2: [mesh_dim_0], -1: [mesh_dim_1]}
sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output)
name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}'
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs])
# compute the memory cost of this strategy
total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1)
output_sharding_size = reduce(operator.mul, self.output_data.shape, 1)
# in this case, output_data uses all the sharding dims.
memory_cost = self.output_data.numel() / output_sharding_size
compute_cost = self._generate_compute_cost(total_sharding_size)
# TODO: add all-reduce cost if lhs or rhs is type of Parameters.
# The communication takes place during backward activation computation.
communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1)
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs))
self.strategies_vector.append(sharding_strategies)
def _registry_2d_strategies_for_matmul(self):
self._split_lhs_space_both_contract(0, 1)
self._split_lhs_space_both_contract(1, 0)
self._split_rhs_space_both_contract(0, 1)
self._split_rhs_space_both_contract(1, 0)
self._split_lhs_space_rhs_space(0, 1)
self._split_lhs_space_rhs_space(1, 0)
def register_strategy(self) -> StrategiesVector:
MESH_DIM_LIST = [0, 1]
if self.node.target != torch.matmul:
output_sharding_specs = self._enumerate_all_possible_output(MESH_DIM_LIST[0], MESH_DIM_LIST[1])
for output_sharding_spec in output_sharding_specs:
self._register_strategy(output_sharding_spec)
else:
# we only care about the non-computing dimensions,
# therefore, we omit the last two dimensions.
dim_size = self.output_data.dim() - 2
# Both device mesh axises are uesd on batch dimensions
dim_partition_dicts_2d = self._enumerate_all_possible_2d_sharding(MESH_DIM_LIST[0], MESH_DIM_LIST[1],
dim_size)
for dim_partition_dict in dim_partition_dicts_2d:
self._registry_no_split_strategies_for_matmul(dim_partition_dict)
# Only one device mesh axis is uesd on batch dimensions
for mesh_dim_index in [0, 1]:
dim_partition_dicts_1d = self._enumerate_all_possible_1d_sharding(MESH_DIM_LIST[mesh_dim_index],
dim_size)
for dim_partition_dict in dim_partition_dicts_1d:
self._registry_no_split_strategies_for_matmul(dim_partition_dict)
self._registry_1d_strategies_for_matmul(dim_partition_dict, [MESH_DIM_LIST[mesh_dim_index - 1]])
# No device mesh axis is uesd on batch dimensions
dim_partition_dict_on_batch_dim = {}
self._registry_no_split_strategies_for_matmul(dim_partition_dict_on_batch_dim)
self._registry_1d_strategies_for_matmul(dim_partition_dict_on_batch_dim, MESH_DIM_LIST)
self._registry_2d_strategies_for_matmul()