import operator from functools import reduce import warnings import torch from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from .operator_handler import OperatorHandler from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec from copy import deepcopy from typing import Dict, List from colossalai.auto_parallel.solver._utils import exception_handler __all__ = ['BcastOpHandler'] class BcastOpHandler(OperatorHandler): """ An OperatorHandler which deals with the sharding strategies of broadcast operators(such as operator.add). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) assert len(self.predecessor_node) == 2 self.lhs_data = self.predecessor_node[0]._meta_data self.rhs_data = self.predecessor_node[1]._meta_data self.lhs = self.predecessor_node[0] self.rhs = self.predecessor_node[1] self.output_data = self.node._meta_data def _generate_sharding_spec(self, input_: torch.Tensor, dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec: shape = list(input_.shape) # padding the shape to the same length as output_data while len(shape) < self.output_data.dim(): shape.insert(0, 1) shape = torch.Size(shape) # if the sharding happens on a size one dimension, we should record it as R. processed_dim_partition_dict = deepcopy(dim_partition_dict) for dim_index, _ in dim_partition_dict.items(): if shape[dim_index] == 1: processed_dim_partition_dict.pop(dim_index) sharding_spec = ShardingSpec(device_mesh=self.device_mesh, entire_shape=shape, dim_partition_dict=processed_dim_partition_dict) return sharding_spec def _generate_compute_cost(self, total_sharding_size): lhs_matrix_shape = self.lhs_data.shape[-2:] rhs_matrix_shape = self.rhs_data.shape[-2:] batch_dimensions_shape = self.output_data.shape[:-2] batch_dimensions_product = reduce(operator.mul, batch_dimensions_shape, 1) compute_cost = reduce( operator.mul, lhs_matrix_shape) * rhs_matrix_shape[0] * batch_dimensions_product * 2 / total_sharding_size return compute_cost def _generate_resharding_costs(self, sharding_specs): # The resharding_cost of weight is counted due to sharing weight cases. dtype = self.node._meta_data.dtype nodes = self.predecessor_node resharding_costs = {} size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size() # shape consistency manager is a singleton class shape_consistency_manager = ShapeConsistencyManager() for input_node, input_spec in zip(nodes, sharding_specs): resharding_costs[input_node] = [] for strategy in input_node.strategies_vector: input_sharding_spec = strategy.output_sharding_spec assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.' # if the input shape is smaller than the target input, we will fill the input to the same length as target. # Then, use the padded input sharding spec to compute the resharding cost. if len(input_sharding_spec.entire_shape) < len(input_spec.entire_shape): new_entire_shape = list(input_sharding_spec.entire_shape) while len(new_entire_shape) < len(input_spec.entire_shape): new_entire_shape.insert(0, 1) new_entire_shape = torch.Size(new_entire_shape) new_device_mesh = input_sharding_spec.device_mesh new_dim_partition_dict = input_sharding_spec.dim_partition_dict input_sharding_spec = ShardingSpec(device_mesh=new_device_mesh, entire_shape=new_entire_shape, dim_partition_dict=new_dim_partition_dict) # compute the resharding cost during forward phase _, _, resharding_cost_forward = shape_consistency_manager.shape_consistency( input_sharding_spec, input_spec) _, _, resharding_cost_backward = shape_consistency_manager.shape_consistency( input_spec, input_sharding_spec) total_resharding_cost = resharding_cost_forward + resharding_cost_backward # we need multiply the size of elem dtype to get correct communication cost resharding_cost = total_resharding_cost * size_per_elem_bytes resharding_costs[input_node].append(resharding_cost) return resharding_costs def _convert_partition_dict_to_sharding_spec(self, dim_partition_list): sharding_spec_list = [] check_duplicated_list = [] for output_dim_partition_dict in dim_partition_list: output_sharding_spec = self._generate_sharding_spec(self.output_data, output_dim_partition_dict) sharding_seq = output_sharding_spec.sharding_sequence if sharding_seq not in check_duplicated_list: check_duplicated_list.append(sharding_seq) sharding_spec_list.append(output_sharding_spec) return sharding_spec_list def _enumerate_all_possible_2d_sharding(self, mesh_dim_0, mesh_dim_1, dim_size): dim_partition_list = [] # enumerate all the 2D sharding cases for i in range(dim_size): for j in range(i + 1, dim_size): dim_partition_dict_0 = {i: [mesh_dim_0], j: [mesh_dim_1]} dim_partition_dict_1 = {i: [mesh_dim_1], j: [mesh_dim_0]} dim_partition_list.append(dim_partition_dict_0) dim_partition_list.append(dim_partition_dict_1) for i in range(dim_size): dim_partition_dict_flatten = {i: [mesh_dim_0, mesh_dim_1]} dim_partition_list.append(dim_partition_dict_flatten) # sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list) return dim_partition_list def _enumerate_all_possible_1d_sharding(self, mesh_dim_0, dim_size): dim_partition_list = [] # enumerate all the 1D sharding cases for i in range(dim_size): dim_partition_dict_0 = {i: [mesh_dim_0]} dim_partition_list.append(dim_partition_dict_0) # sharding_spec_list = self._convert_partition_dict_to_sharding_spec(dim_partition_list) return dim_partition_list def _enumerate_all_possible_output(self, mesh_dim_0, mesh_dim_1): # use mesh_dim_0, mesh_dim_1 instead of constant 0, 1 in here for N-D device mesh scaliablity. output_dim_partition_list = [] dim_size = self.output_data.dim() # enumerate all the 2D sharding cases sharding_list_2d = self._enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size) output_dim_partition_list.extend(sharding_list_2d) # enumerate all the 1D sharding cases sharding_list_1d_on_dim_0 = self._enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size) output_dim_partition_list.extend(sharding_list_1d_on_dim_0) sharding_list_1d_on_dim_1 = self._enumerate_all_possible_1d_sharding(mesh_dim_1, dim_size) output_dim_partition_list.extend(sharding_list_1d_on_dim_1) # add empty dict for fully replicated case output_dim_partition_list.append({}) output_sharding_spec_list = self._convert_partition_dict_to_sharding_spec(output_dim_partition_list) return output_sharding_spec_list @exception_handler def _register_strategy(self, output_sharding_spec): dim_partition_dict_for_input = output_sharding_spec.dim_partition_dict sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_input) sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_input) name = f'{output_sharding_spec.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' dim_partition_dict_for_output = output_sharding_spec.dim_partition_dict # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the computation cost of this strategy sharding_dims = [] for mesh_dims in dim_partition_dict_for_output.values(): for mesh_dim in mesh_dims: sharding_dims.append(self.device_mesh.shape[mesh_dim]) sharding_size = reduce(operator.mul, sharding_dims, 1) memory_cost = self.output_data.numel() / sharding_size compute_cost = memory_cost communication_cost = 0 sharding_strategies = ShardingStrategy(name, output_sharding_spec=output_sharding_spec, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) ############################################## #used to generate strategies for torch.matmul# ############################################## # @exception_handler def _registry_no_split_strategies_for_matmul(self, dim_partition_dict_for_batch_dim): # this dim partition dict only describes the batch dimensions, but in this scenario, # matrix dimensions are fully replicated, so it do not need extra process. sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_batch_dim) sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_batch_dim) sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_batch_dim) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy batch_sharding_dims = [] for mesh_dims in dim_partition_dict_for_batch_dim.values(): for mesh_dim in mesh_dims: batch_sharding_dims.append(self.device_mesh.shape[mesh_dim]) batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1) # in this case, total_sharding_size is equal to the batch sharding size memory_cost = self.output_data.numel() / batch_sharding_size # compute the computation cost of this strategy compute_cost = self._generate_compute_cost(batch_sharding_size) # in this case, no communication takes place. # TODO: add all-reduce cost if lhs or rhs is type of Parameters. communication_cost = 0 sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _split_dim_i(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix): # A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j] # this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it. # In this scenario, matrix dimensions will be sharded on 'i' dimension. # in this case, the matrix dimensions of lhs is sharded on 'i' dimension. dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_lhs.update({-2: mesh_dim_on_matrix}) # in this case, the matrix dimensions of rhs is fully replicated. dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim) # in this case, the matrix dimensions of output is sharded on 'i' dimension. dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_output.update({-2: mesh_dim_on_matrix}) # generate sharding specs sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_dims = [] # append batch sharding dims for mesh_dims in dim_partition_dict_for_batch_dim.values(): for mesh_dim in mesh_dims: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) # append the sharding dims on matrix dimension for mesh_dim in mesh_dim_on_matrix: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) total_sharding_size = reduce(operator.mul, total_sharding_dims, 1) # in this case, output_data uses all the sharding dims. memory_cost = self.output_data.numel() / total_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. communication_cost = 0 sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _split_dim_k(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix): # A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j] # this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it. # In this scenario, matrix dimensions will be sharded on 'k' dimension. # in this case, the matrix dimensions of lhs is sharded on 'k' dimension. dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_lhs.update({-1: mesh_dim_on_matrix}) # in this case, the matrix dimensions of rhs is sharded on 'k' dimension. dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_rhs.update({-2: mesh_dim_on_matrix}) # in this case, the matrix dimensions of output is fully replicated. dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim) # generate sharding specs sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_dims = [] batch_sharding_dims = [] # append batch sharding dims for mesh_dims in dim_partition_dict_for_batch_dim.values(): for mesh_dim in mesh_dims: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) batch_sharding_dims.append(self.device_mesh.shape[mesh_dim]) # append the sharding dims on matrix dimension for mesh_dim in mesh_dim_on_matrix: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) batch_sharding_size = reduce(operator.mul, batch_sharding_dims, 1) total_sharding_size = reduce(operator.mul, total_sharding_dims, 1) # in this case, output_data is fully replicated on matrix dimensions. memory_cost = self.output_data.numel() / batch_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. # The communication takes place during forward activation computation. if len(mesh_dim_on_matrix) == 1: communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0]) else: communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0) sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _split_dim_j(self, dim_partition_dict_for_batch_dim, mesh_dim_on_matrix): # A batched matrix multiplication can be viewed as [b, i, k] x [b, k, j] -> [b, i, j] # this dim partition dict describe the batch dimensions, so we should append the matrix dimension sharding info on it. # In this scenario, matrix dimensions will be is sharded on 'j' dimension. # in this case, the matrix dimensions of lhs is fully replicated. dim_partition_dict_for_lhs = deepcopy(dim_partition_dict_for_batch_dim) # in this case, the matrix dimensions of rhs is sharded on 'j' dimension. dim_partition_dict_for_rhs = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_rhs.update({-1: mesh_dim_on_matrix}) # in this case, the matrix dimensions of output is sharded on 'j' dimension. dim_partition_dict_for_output = deepcopy(dim_partition_dict_for_batch_dim) dim_partition_dict_for_output.update({-1: mesh_dim_on_matrix}) # generate sharding specs sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_dims = [] # append batch sharding dims for mesh_dims in dim_partition_dict_for_batch_dim.values(): for mesh_dim in mesh_dims: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) # append the sharding dims on matrix dimension for mesh_dim in mesh_dim_on_matrix: total_sharding_dims.append(self.device_mesh.shape[mesh_dim]) total_sharding_size = reduce(operator.mul, total_sharding_dims, 1) # in this case, output_data uses all the sharding dims. memory_cost = self.output_data.numel() / total_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. # The communication takes place during backward activation computation. if len(mesh_dim_on_matrix) == 1: communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_on_matrix[0]) else: communication_cost = self.device_mesh.flatten_device_mesh.all_reduce_cost(memory_cost, 0) sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _registry_1d_strategies_for_matmul(self, dim_partition_dict, mesh_dim_list): self._split_dim_i(dim_partition_dict, mesh_dim_list) self._split_dim_k(dim_partition_dict, mesh_dim_list) self._split_dim_j(dim_partition_dict, mesh_dim_list) def _split_lhs_space_both_contract(self, mesh_dim_0, mesh_dim_1): dim_partition_dict_for_lhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]} sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) dim_partition_dict_for_rhs = {-2: [mesh_dim_1]} sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) dim_partition_dict_for_output = {-2: [mesh_dim_0]} sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1) output_sharding_size = reduce(operator.mul, self.output_data.shape, 1) # in this case, output_data uses all the sharding dims. memory_cost = self.output_data.numel() / output_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. # The communication takes place during forward activation computation. communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1) sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _split_rhs_space_both_contract(self, mesh_dim_0, mesh_dim_1): dim_partition_dict_for_lhs = {-1: [mesh_dim_0]} sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) dim_partition_dict_for_rhs = {-2: [mesh_dim_0], -1: [mesh_dim_1]} sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) dim_partition_dict_for_output = {-1: [mesh_dim_1]} sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1) output_sharding_size = reduce(operator.mul, self.output_data.shape, 1) # in this case, output_data uses all the sharding dims. memory_cost = self.output_data.numel() / output_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. # The communication takes place during forward and backward activation computation. communication_cost_forward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_0) communication_cost_backward_activation = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1) communication_cost = communication_cost_backward_activation + communication_cost_forward_activation sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _split_lhs_space_rhs_space(self, mesh_dim_0, mesh_dim_1): dim_partition_dict_for_lhs = {-2: [mesh_dim_0]} sharding_spec_for_lhs = self._generate_sharding_spec(self.lhs_data, dim_partition_dict_for_lhs) dim_partition_dict_for_rhs = {-1: [mesh_dim_1]} sharding_spec_for_rhs = self._generate_sharding_spec(self.rhs_data, dim_partition_dict_for_rhs) dim_partition_dict_for_output = {-2: [mesh_dim_0], -1: [mesh_dim_1]} sharding_spec_for_output = self._generate_sharding_spec(self.output_data, dim_partition_dict_for_output) name = f'{sharding_spec_for_output.sharding_sequence} = {sharding_spec_for_lhs.sharding_sequence} x {sharding_spec_for_rhs.sharding_sequence}' # generate resharding cost for this strategy resharding_costs = self._generate_resharding_costs([sharding_spec_for_lhs, sharding_spec_for_rhs]) # compute the memory cost of this strategy total_sharding_size = reduce(operator.mul, self.device_mesh.shape, 1) output_sharding_size = reduce(operator.mul, self.output_data.shape, 1) # in this case, output_data uses all the sharding dims. memory_cost = self.output_data.numel() / output_sharding_size compute_cost = self._generate_compute_cost(total_sharding_size) # TODO: add all-reduce cost if lhs or rhs is type of Parameters. # The communication takes place during backward activation computation. communication_cost = self.device_mesh.all_reduce_cost(memory_cost, mesh_dim_1) sharding_strategies = ShardingStrategy(name, output_sharding_spec=sharding_spec_for_output, compute_cost=compute_cost, communication_cost=communication_cost, memory_cost=memory_cost, resharding_costs=resharding_costs, input_shardings=(sharding_spec_for_lhs, sharding_spec_for_rhs)) self.strategies_vector.append(sharding_strategies) def _registry_2d_strategies_for_matmul(self): self._split_lhs_space_both_contract(0, 1) self._split_lhs_space_both_contract(1, 0) self._split_rhs_space_both_contract(0, 1) self._split_rhs_space_both_contract(1, 0) self._split_lhs_space_rhs_space(0, 1) self._split_lhs_space_rhs_space(1, 0) def register_strategy(self) -> StrategiesVector: MESH_DIM_LIST = [0, 1] if self.node.target != torch.matmul: output_sharding_specs = self._enumerate_all_possible_output(MESH_DIM_LIST[0], MESH_DIM_LIST[1]) for output_sharding_spec in output_sharding_specs: self._register_strategy(output_sharding_spec) else: # we only care about the non-computing dimensions, # therefore, we omit the last two dimensions. dim_size = self.output_data.dim() - 2 # Both device mesh axises are uesd on batch dimensions dim_partition_dicts_2d = self._enumerate_all_possible_2d_sharding(MESH_DIM_LIST[0], MESH_DIM_LIST[1], dim_size) for dim_partition_dict in dim_partition_dicts_2d: self._registry_no_split_strategies_for_matmul(dim_partition_dict) # Only one device mesh axis is uesd on batch dimensions for mesh_dim_index in [0, 1]: dim_partition_dicts_1d = self._enumerate_all_possible_1d_sharding(MESH_DIM_LIST[mesh_dim_index], dim_size) for dim_partition_dict in dim_partition_dicts_1d: self._registry_no_split_strategies_for_matmul(dim_partition_dict) self._registry_1d_strategies_for_matmul(dim_partition_dict, [MESH_DIM_LIST[mesh_dim_index - 1]]) # No device mesh axis is uesd on batch dimensions dim_partition_dict_on_batch_dim = {} self._registry_no_split_strategies_for_matmul(dim_partition_dict_on_batch_dim) self._registry_1d_strategies_for_matmul(dim_partition_dict_on_batch_dim, MESH_DIM_LIST) self._registry_2d_strategies_for_matmul()