You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/trainer/hooks/_metric_hook.py

390 lines
13 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Callable
import torch
import torch.distributed as dist
from colossalai.communication import all_reduce
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import HOOKS
from colossalai.utils import get_current_device, is_no_pp_or_last_stage
from ._base_hook import BaseHook
class Metric(ABC):
"""A basic class of metric collectors. It collects a specific
metric during training or evaluation and it's always used with
:class:`MetricHook` to help it update its states and show the
metric. So please use corresponding hook class to make the metric
collector works.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only: bool):
# is the metric only read for the full epoch
self._epoch_only = epoch_only
@property
def epoch_only(self):
"""Returns :attr:`epoch_only`.
"""
return self._epoch_only
@abstractmethod
def reset(self) -> None:
"""Resets the metric to it's initial state.
By default, this is called at the start of each epoch.
"""
pass
@abstractmethod
def update(self, *args, **kwargs) -> None:
"""Updates the metric's state using the passed batch output.
By default, this is called once for each batch.
"""
pass
@abstractmethod
def get_last_step_value(self):
"""Returns the metric value in the last iteration.
"""
pass
@abstractmethod
def get_accumulated_value(self):
"""Computes the metric based on it's accumulated state.
By default, this is called at the end of each epoch.
:return: the actual quantity of interest
:rtype: Any
"""
pass
@staticmethod
@abstractmethod
def is_better(a, b) -> bool:
"""Compares a and b, and returns whether a is better than b
:return: The result of comparison
:rtype: bool
"""
pass
class LossMetric(Metric):
"""A metric collector for loss.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only):
super().__init__(epoch_only=epoch_only)
self.last_step_loss = torch.zeros(1, device=get_current_device())
self.accum_loss = torch.zeros(1, device=get_current_device())
self.count = 0
def reset(self) -> None:
"""Sets :attr:`last_step_loss` and :attr:`accum_loss` to zero.
"""
self.last_step_loss.zero_()
self.accum_loss.zero_()
self.count = 0
def update(self, loss) -> None:
"""Updates :attr:`last_step_loss` and :attr:`accum_loss` with current loss.
It expects the output has loss.
:param loss: Current loss of the output
"""
# expect output to be logits, label and loss
loss_ = loss.detach()
self.last_step_loss.copy_(loss_)
self.accum_loss.add_(loss_)
self.count += 1
def get_accumulated_value(self):
"""Returns accumulated loss.
"""
if gpc.is_initialized(ParallelMode.DATA):
dist.all_reduce(self.accum_loss, op=dist.ReduceOp.SUM, group=gpc.get_group(ParallelMode.DATA))
self.accum_loss.div_(gpc.get_world_size(ParallelMode.DATA))
self.accum_loss.div_(self.count)
return self.accum_loss.item()
def get_last_step_value(self):
"""Returns :attr:`last_step_loss`.
"""
return self.last_step_loss
@staticmethod
def is_better(a, b):
return a < b
class LearningRateMetric(Metric):
"""A metric collector for learning rate.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
:param initial_lr: Initial learning rate, defaults to 0.0
:type initial_lr: float, optional
"""
def __init__(self, epoch_only: bool, initial_lr: float = 0.):
super().__init__(epoch_only=epoch_only)
self.lr = initial_lr
def reset(self) -> None:
pass
def update(self, lr) -> None:
self.lr = lr
def get_last_step_value(self):
return self.lr
def get_accumulated_value(self):
return self.lr
@staticmethod
def is_better(a, b) -> bool:
pass
class AccuracyMetric(Metric):
"""A metric collector for accuracy. It only works for classification
tasks.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
:param accuracy_func: Accuracy function for the classification task
:type accuracy_func: :class:`typing.Callable`
"""
def __init__(self, epoch_only: bool, accuracy_func: Callable):
super().__init__(epoch_only=epoch_only)
self.acc = accuracy_func
self.last_step_sum = torch.zeros(1, device=get_current_device())
self.last_step_correct = torch.zeros(1, device=get_current_device())
self.accumulated_sum = torch.zeros(1, device=get_current_device())
self.accumulated_correct = torch.zeros(1, device=get_current_device())
def reset(self) -> None:
self.last_step_sum.zero_()
self.last_step_correct.zero_()
self.accumulated_sum.zero_()
self.accumulated_correct.zero_()
def update(self, logits, targets, batch_size) -> None:
"""Updates last step accuracy and accumulated accuracy with current logits
and labels. It expects the output has logits and labels.
:param logits: The logits output of the model
:param targets: Real labels of the dataset
:param batch_size: Batch size of the task
"""
if isinstance(logits, (list, tuple)):
logits = logits[0]
if isinstance(targets, (list, tuple)):
targets = targets[0]
# update
correct = self.acc(logits, targets)
self.last_step_sum.fill_(batch_size)
self.last_step_correct.fill_(correct)
self.accumulated_sum += self.last_step_sum
self.accumulated_correct += self.last_step_correct
def get_last_step_value(self):
self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA)
self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA)
return (self.last_step_correct / self.last_step_sum).item()
def get_accumulated_value(self):
self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA)
self.accumulated_correct = all_reduce(self.accumulated_correct, ParallelMode.DATA)
return (self.accumulated_correct / self.accumulated_sum).item()
@staticmethod
def is_better(a, b) -> bool:
return a > b
class MetricHook(BaseHook):
"""Specialized hook classes for :class:`Metric`.
Some help metric collectors initialize, reset and
update their states. Others are used to display and
record the metric.
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int
"""
def __init__(
self,
priority: int,
):
super().__init__(priority)
self._is_stage_to_compute = is_no_pp_or_last_stage()
def _check_metric_states_initialization(self, trainer):
if 'metrics' not in trainer.states:
self.init_runner_states(trainer, 'metrics', dict(train={}, test={}))
@HOOKS.register_module
class LossHook(MetricHook):
"""Specialized hook class for :class:`Loss`.
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
:type priority: int, optional
"""
def __init__(self, priority: int = 0):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.train_loss = LossMetric(epoch_only=False)
self.test_loss = LossMetric(epoch_only=True)
# register the metric calculator
trainer.states['metrics']['train']['Loss'] = self.train_loss
trainer.states['metrics']['test']['Loss'] = self.test_loss
def before_train_epoch(self, trainer):
if self._is_stage_to_compute:
self.train_loss.reset()
def after_train_iter(self, trainer, logits, label, loss):
if self._is_stage_to_compute:
self.train_loss.update(loss)
def before_test_epoch(self, trainer):
if self._is_stage_to_compute:
self.test_loss.reset()
def after_test_iter(self, trainer, logits, label, loss):
if self._is_stage_to_compute:
self.test_loss.update(loss)
@HOOKS.register_module
class AccuracyHook(MetricHook):
"""Specialized hook class for :class:`Accuracy`.
:param accuracy_func: Priority in the printing, hooks with small priority will be printed in front
:type accuracy_func: typing.Callable
:param priority: Priority in the printing, hooks with small priority will be printed in front, defaults to 0
:type priority: int, optional
"""
def __init__(self, accuracy_func: Callable, priority: int = 0):
super().__init__(priority)
self.accuracy_func = accuracy_func
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = AccuracyMetric(epoch_only=True, accuracy_func=self.accuracy_func)
# register the metric
trainer.states['metrics']['test']['Accuracy'] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, targets, *args):
if self._is_stage_to_compute:
batch_size = trainer.schedule.batch_size
self.metric.update(logits, targets, batch_size)
class ThroughputMetric(Metric):
"""Metric for :class:`Throughput`.
:param epoch_only: epoch only
:type epoch_only: bool
"""
def __init__(self, epoch_only: bool):
super().__init__(epoch_only=epoch_only)
self.accumulated_num_samples = torch.zeros(1, device=get_current_device())
self.accumulated_used_time = torch.zeros(1, device=get_current_device())
self.last_step_num_samples = torch.zeros(1, device=get_current_device())
self.last_step_used_time = torch.zeros(1, device=get_current_device())
def reset(self) -> None:
self.accumulated_num_samples.zero_()
self.accumulated_used_time.zero_()
self.last_step_num_samples.zero_()
self.last_step_used_time.zero_()
def update(self, num_samples, time) -> None:
self.last_step_num_samples.fill_(num_samples)
self.last_step_used_time.fill_(time)
self.accumulated_num_samples += self.last_step_num_samples
self.accumulated_used_time += self.last_step_used_time
def get_last_step_value(self):
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item()
def get_accumulated_value(self):
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA)
return (self.accumulated_num_samples / (self.accumulated_used_time + 1e-12)).item()
@staticmethod
def is_better(a, b) -> bool:
pass
@HOOKS.register_module
class ThroughputHook(MetricHook):
"""Specialized hook class for :class:`Throughput`.
:param priority: priority of throughput hook, defaults to 10
:type priority: int, optional
"""
def __init__(self, priority: int = 10):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = ThroughputMetric(epoch_only=True)
# register the metric
trainer.states['metrics']['train']['Throughput'] = self.metric
trainer.states['metrics']['test']['Throughput'] = self.metric
def before_train_epoch(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_train_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.schedule.batch_size, trainer._timer.get_timer('Train-step').get_elapsed_time())
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.schedule.batch_size, trainer._timer.get_timer('Test-step').get_elapsed_time())