Making large AI models cheaper, faster and more accessible
 
 
 
 
 
 
Go to file
Frank Lee b82d60be02 updated github action for develop branch (#214) 2022-02-15 11:31:13 +08:00
.github updated github action for develop branch (#214) 2022-02-15 11:31:13 +08:00
benchmark@62904e4ff2 Automated submodule synchronization (#203) 2022-02-04 10:19:38 +08:00
colossalai fixed utils docstring and add example to readme (#200) 2022-02-03 11:37:17 +08:00
docker added docker documentation (#152) 2022-01-18 13:35:18 +08:00
docs update logo 2022-01-21 12:31:07 +08:00
examples@c3cf060d83 Automated submodule synchronization (#203) 2022-02-04 10:19:38 +08:00
model_zoo Added moe parallel example (#140) 2022-01-17 15:34:04 +08:00
requirements Update GitHub action and pre-commit settings (#196) 2022-01-28 16:59:53 +08:00
scripts Migrated project 2021-10-28 18:21:23 +02:00
tests add pytorch hooks (#179) 2022-01-25 22:20:54 +08:00
.gitignore Migrated project 2021-10-28 18:21:23 +02:00
.gitmodules fixed submodule url (#167) 2022-01-19 22:33:39 +08:00
.pre-commit-config.yaml Update GitHub action and pre-commit settings (#196) 2022-01-28 16:59:53 +08:00
.readthedocs.yaml update doc requirements and rtd conf (#165) 2022-01-19 19:46:43 +08:00
CHANGE_LOG.md add changelog and contributing doc (#202) 2022-02-03 15:38:00 +08:00
CONTRIBUTING.md add changelog and contributing doc (#202) 2022-02-03 15:38:00 +08:00
LICENSE Initial commit 2021-10-29 00:19:45 +08:00
MANIFEST.in refactor kernel (#142) 2022-01-13 16:47:17 +08:00
README.md add code quality badge (#201) 2022-02-03 14:01:09 +08:00
pytest.ini Migrated project 2021-10-28 18:21:23 +02:00
setup.py refactor kernel (#142) 2022-01-13 16:47:17 +08:00

README.md

Colossal-AI

logo

An integrated large-scale model training system with efficient parallelization techniques.

Installation

We recommend you to install from source as the Colossal-AI is updating frequently in the early versions. The documentation will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problem. :)

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt

# install colossalai
pip install .

Install and enable CUDA kernel fusion (compulsory installation when using fused optimizer)

pip install -v --no-cache-dir --global-option="--cuda_ext" .

PyPI

pip install colossalai

Use Docker

Run the following command to build a docker image from Dockerfile provided.

cd ColossalAI
docker build -t colossalai ./docker

Run the following command to start the docker container in interactive mode.

docker run -ti --gpus all --rm --ipc=host colossalai bash

Quick View

Start Distributed Training in Lines

import colossalai
from colossalai.utils import get_dataloader


# my_config can be path to config file or a dictionary obj
# 'localhost' is only for single node, you need to specify
# the node name if using multiple nodes
colossalai.launch(
    config=my_config,
    rank=rank,
    world_size=world_size,
    backend='nccl',
    port=29500,
    host='localhost'
)

# build your model
model = ...

# build you dataset, the dataloader will have distributed data
# sampler by default
train_dataset = ...
train_dataloader = get_dataloader(dataset=dataset,
                                shuffle=True
                                )


# build your
optimizer = ...

# build your loss function
criterion = ...

# build your lr_scheduler
engine, train_dataloader, _, _ = colossalai.initialize(
    model=model,
    optimizer=optimizer,
    criterion=criterion,
    train_dataloader=train_dataloader
)

# start training
engine.train()
for epoch in range(NUM_EPOCHS):
    for data, label in train_dataloader:
        engine.zero_grad()
        output = engine(data)
        loss = engine.criterion(output, label)
        engine.backward(loss)
        engine.step()

Write a Simple 2D Parallel Model

Let's say we have a huge MLP model and its very large hidden size makes it difficult to fit into a single GPU. We can then distribute the model weights across GPUs in a 2D mesh while you still write your model in a familiar way.

from colossalai.nn import Linear2D
import torch.nn as nn


class MLP_2D(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear_1 = Linear2D(in_features=1024, out_features=16384)
        self.linear_2 = Linear2D(in_features=16384, out_features=1024)

    def forward(self, x):
        x = self.linear_1(x)
        x = self.linear_2(x)
        return x

Features

Colossal-AI provides a collection of parallel training components for you. We aim to support you to write your distributed deep learning models just like how you write your single-GPU model. We provide friendly tools to kickstart distributed training in a few lines.

  • Data Parallelism
  • Pipeline Parallelism
  • 1D, 2D, 2.5D, 3D and sequence parallelism
  • Friendly trainer and engine
  • Extensible for new parallelism
  • Mixed Precision Training
  • Zero Redundancy Optimizer (ZeRO)

Please visit our documentation and tutorials for more details.

Cite Us

@article{bian2021colossal,
  title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
  author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
  journal={arXiv preprint arXiv:2110.14883},
  year={2021}
}