ColossalAI/examples/tutorial/sequence_parallel/model/layers/preprocess.py

59 lines
2.1 KiB
Python

from colossalai.context.parallel_mode import ParallelMode
import torch
import torch.nn as nn
from colossalai.core import global_context as gpc
class PreProcessor(nn.Module):
def __init__(self, sub_seq_length):
super().__init__()
self.sub_seq_length = sub_seq_length
def bert_position_ids(self, token_ids):
# Create position ids
seq_length = token_ids.size(1)
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
position_ids = torch.arange(seq_length*local_rank,
seq_length * (local_rank+1),
dtype=torch.long,
device=token_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(token_ids)
return position_ids
def bert_extended_attention_mask(self, attention_mask):
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
start_index = local_rank * self.sub_seq_length
end_index = (local_rank + 1) * self.sub_seq_length
# We create a 3D attention mask from a 2D tensor mask.
# [b, 1, s]
attention_mask_b1s = attention_mask.unsqueeze(1)
# [b, s, 1]
attention_mask_bs1 = attention_mask.unsqueeze(2)
# [b, s/D, s]
attention_mask_bss = attention_mask_b1s * attention_mask_bs1
attention_mask_bss = attention_mask_bss[:, start_index:end_index, :]
# [b, 1, s/D, s]
extended_attention_mask = attention_mask_bss.unsqueeze(1)
# Convert attention mask to binary:
extended_attention_mask = (extended_attention_mask < 0.5)
return extended_attention_mask
def forward(self, input_ids=None, attention_mask=None):
if attention_mask is not None:
extended_attention_mask = self.bert_extended_attention_mask(attention_mask)
else:
extended_attention_mask = None
if input_ids is not None:
position_ids = self.bert_position_ids(input_ids)
else:
position_ids = None
return position_ids, extended_attention_mask