from colossalai.context.parallel_mode import ParallelMode import torch import torch.nn as nn from colossalai.core import global_context as gpc class PreProcessor(nn.Module): def __init__(self, sub_seq_length): super().__init__() self.sub_seq_length = sub_seq_length def bert_position_ids(self, token_ids): # Create position ids seq_length = token_ids.size(1) local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) position_ids = torch.arange(seq_length*local_rank, seq_length * (local_rank+1), dtype=torch.long, device=token_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(token_ids) return position_ids def bert_extended_attention_mask(self, attention_mask): local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE) start_index = local_rank * self.sub_seq_length end_index = (local_rank + 1) * self.sub_seq_length # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = attention_mask.unsqueeze(2) # [b, s/D, s] attention_mask_bss = attention_mask_b1s * attention_mask_bs1 attention_mask_bss = attention_mask_bss[:, start_index:end_index, :] # [b, 1, s/D, s] extended_attention_mask = attention_mask_bss.unsqueeze(1) # Convert attention mask to binary: extended_attention_mask = (extended_attention_mask < 0.5) return extended_attention_mask def forward(self, input_ids=None, attention_mask=None): if attention_mask is not None: extended_attention_mask = self.bert_extended_attention_mask(attention_mask) else: extended_attention_mask = None if input_ids is not None: position_ids = self.bert_position_ids(input_ids) else: position_ids = None return position_ids, extended_attention_mask