mirror of https://github.com/hpcaitech/ColossalAI
541 lines
23 KiB
Python
541 lines
23 KiB
Python
import math
|
|
import warnings
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.nn import CrossEntropyLoss
|
|
from torch.nn import functional as F
|
|
from transformers.models.bloom.modeling_bloom import (
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
BloomAttention,
|
|
BloomBlock,
|
|
BloomForCausalLM,
|
|
BloomModel,
|
|
CausalLMOutputWithCrossAttentions,
|
|
)
|
|
from transformers.utils import logging
|
|
|
|
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
|
from colossalai.kernel.triton import bloom_context_attn_fwd, copy_kv_cache_to_dest, token_attention_fwd
|
|
|
|
try:
|
|
from lightllm.models.bloom.triton_kernel.context_flashattention_nopad import (
|
|
context_attention_fwd as lightllm_bloom_context_attention_fwd,
|
|
)
|
|
|
|
HAS_LIGHTLLM_KERNEL = True
|
|
except:
|
|
HAS_LIGHTLLM_KERNEL = False
|
|
|
|
|
|
def generate_alibi(n_head, dtype=torch.float16):
|
|
"""
|
|
This method is adapted from `_generate_alibi` function
|
|
in `lightllm/models/bloom/layer_weights/transformer_layer_weight.py`
|
|
of the ModelTC/lightllm GitHub repository.
|
|
This method is originally the `build_alibi_tensor` function
|
|
in `transformers/models/bloom/modeling_bloom.py`
|
|
of the huggingface/transformers GitHub repository.
|
|
"""
|
|
|
|
def get_slopes_power_of_2(n):
|
|
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
|
return [start * start**i for i in range(n)]
|
|
|
|
def get_slopes(n):
|
|
if math.log2(n).is_integer():
|
|
return get_slopes_power_of_2(n)
|
|
else:
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
|
slopes_power_of_2 = get_slopes_power_of_2(closest_power_of_2)
|
|
slopes_double = get_slopes(2 * closest_power_of_2)
|
|
slopes_combined = slopes_power_of_2 + slopes_double[0::2][: n - closest_power_of_2]
|
|
return slopes_combined
|
|
|
|
slopes = get_slopes(n_head)
|
|
return torch.tensor(slopes, dtype=dtype)
|
|
|
|
|
|
class BloomInferenceForwards:
|
|
"""
|
|
This class serves a micro library for bloom inference forwards.
|
|
We intend to replace the forward methods for BloomForCausalLM, BloomModel, BloomBlock, and BloomAttention,
|
|
as well as prepare_inputs_for_generation method for BloomForCausalLM.
|
|
For future improvement, we might want to skip replacing methods for BloomForCausalLM,
|
|
and call BloomModel.forward iteratively in TpInferEngine
|
|
"""
|
|
|
|
@staticmethod
|
|
def bloom_model_forward(
|
|
self: BloomModel,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.LongTensor] = None,
|
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
**deprecated_arguments,
|
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
logger = logging.get_logger(__name__)
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
warnings.warn(
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
" passing `position_ids`.",
|
|
FutureWarning,
|
|
)
|
|
if len(deprecated_arguments) > 0:
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
# still need to keep past_key_values to fit original forward flow
|
|
if past_key_values is None:
|
|
past_key_values = tuple([None] * len(self.h))
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape batch_size x num_heads x N x N
|
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
|
|
|
presents = () if use_cache else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# NOTE determine if BatchInferState is passed in via arg
|
|
# if not, get the attr binded to the model
|
|
# We might wantto remove setattr later
|
|
if infer_state is None:
|
|
assert hasattr(self, "infer_state")
|
|
infer_state = self.infer_state
|
|
|
|
# infer_state.cache_manager = self.cache_manager
|
|
if infer_state.is_context_stage:
|
|
past_key_values_length = 0
|
|
else:
|
|
past_key_values_length = infer_state.max_len_in_batch - 1
|
|
|
|
if use_cache and seq_length != 1:
|
|
# prefill stage
|
|
infer_state.is_context_stage = True # set prefill stage, notify attention layer
|
|
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
|
BatchInferState.init_block_loc(
|
|
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
|
|
)
|
|
else:
|
|
infer_state.is_context_stage = False
|
|
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
|
if alloc_mem is not None:
|
|
infer_state.decode_is_contiguous = True
|
|
infer_state.decode_mem_index = alloc_mem[0]
|
|
infer_state.decode_mem_start = alloc_mem[1]
|
|
infer_state.decode_mem_end = alloc_mem[2]
|
|
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
|
else:
|
|
print(f" *** Encountered allocation non-contiguous")
|
|
print(f" infer_state.max_len_in_batch : {infer_state.max_len_in_batch}")
|
|
infer_state.decode_is_contiguous = False
|
|
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
|
infer_state.decode_mem_index = alloc_mem
|
|
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
|
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
|
infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones((batch_size, infer_state.max_len_in_batch), device=hidden_states.device)
|
|
else:
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
# NOTE revise: we might want to store a single 1D alibi(length is #heads) in model,
|
|
# or store to BatchInferState to prevent re-calculating
|
|
# When we have multiple process group (e.g. dp together with tp), we need to pass the pg to here
|
|
# alibi = generate_alibi(self.num_heads).contiguous().cuda()
|
|
tp_size = dist.get_world_size()
|
|
curr_tp_rank = dist.get_rank()
|
|
alibi = (
|
|
generate_alibi(self.num_heads * tp_size)
|
|
.contiguous()[curr_tp_rank * self.num_heads : (curr_tp_rank + 1) * self.num_heads]
|
|
.cuda()
|
|
)
|
|
causal_mask = self._prepare_attn_mask(
|
|
attention_mask,
|
|
input_shape=(batch_size, seq_length),
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
infer_state.decode_layer_id = 0
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
# NOTE: currently our KV cache manager does not handle this condition
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
# None for past_key_value
|
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
|
|
|
return custom_forward
|
|
|
|
outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
alibi,
|
|
causal_mask,
|
|
layer_past,
|
|
head_mask[i],
|
|
)
|
|
else:
|
|
outputs = block(
|
|
hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=causal_mask,
|
|
head_mask=head_mask[i],
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
alibi=alibi,
|
|
infer_state=infer_state,
|
|
)
|
|
|
|
infer_state.decode_layer_id += 1
|
|
hidden_states = outputs[0]
|
|
if use_cache is True:
|
|
presents = presents + (outputs[1],)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
# Add last hidden state
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
# update indices of kv cache block
|
|
# NOT READY FOR PRIME TIME
|
|
# might want to remove this part, instead, better to pass the BatchInferState from model forward,
|
|
# and update these information in engine.generate after model foward called
|
|
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
|
infer_state.seq_len += 1
|
|
infer_state.max_len_in_batch += 1
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents, # should always be (None, None, ..., None)
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def bloom_for_causal_lm_forward(
|
|
self: BloomForCausalLM,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
**deprecated_arguments,
|
|
):
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
logging.get_logger(__name__)
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
|
warnings.warn(
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
|
" passing `position_ids`.",
|
|
FutureWarning,
|
|
)
|
|
if len(deprecated_arguments) > 0:
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = BloomInferenceForwards.bloom_model_forward(
|
|
self.transformer,
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
infer_state=infer_state,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# move labels to correct device to enable model parallelism
|
|
labels = labels.to(lm_logits.device)
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
batch_size, seq_length, vocab_size = shift_logits.shape
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(
|
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
|
)
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return CausalLMOutputWithCrossAttentions(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def bloom_for_causal_lm_prepare_inputs_for_generation(
|
|
self: BloomForCausalLM,
|
|
input_ids: torch.LongTensor,
|
|
past_key_values: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> dict:
|
|
# only last token for input_ids if past is not None
|
|
if past_key_values:
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
# NOTE we won't use past key values here
|
|
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
|
# if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
|
# past_key_values = self._convert_to_bloom_cache(past_key_values)
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def bloom_block_forward(
|
|
self: BloomBlock,
|
|
hidden_states: torch.Tensor,
|
|
alibi: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
use_cache: bool = False,
|
|
output_attentions: bool = False,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
):
|
|
# hidden_states: [batch_size, seq_length, hidden_size]
|
|
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
# Layer norm post the self attention.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
# Self attention.
|
|
attn_outputs = self.self_attention(
|
|
layernorm_output,
|
|
residual,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
alibi=alibi,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
infer_state=infer_state,
|
|
)
|
|
|
|
attention_output = attn_outputs[0]
|
|
|
|
outputs = attn_outputs[1:]
|
|
|
|
layernorm_output = self.post_attention_layernorm(attention_output)
|
|
|
|
# Get residual
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = attention_output
|
|
|
|
# MLP.
|
|
output = self.mlp(layernorm_output, residual)
|
|
|
|
if use_cache:
|
|
outputs = (output,) + outputs
|
|
else:
|
|
outputs = (output,) + outputs[1:]
|
|
|
|
return outputs # hidden_states, present, attentions
|
|
|
|
@staticmethod
|
|
def bloom_attention_forward(
|
|
self: BloomAttention,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor,
|
|
alibi: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
use_cache: bool = False,
|
|
output_attentions: bool = False,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
):
|
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
|
|
|
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
|
batch_size, q_length, H, D_HEAD = query_layer.shape
|
|
k = key_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
|
v = value_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
|
|
|
mem_manager = infer_state.cache_manager
|
|
layer_id = infer_state.decode_layer_id
|
|
|
|
if infer_state.is_context_stage:
|
|
# context process
|
|
max_input_len = q_length
|
|
b_start_loc = infer_state.start_loc
|
|
b_seq_len = infer_state.seq_len[:batch_size]
|
|
q = query_layer.reshape(-1, H, D_HEAD)
|
|
|
|
copy_kv_cache_to_dest(k, infer_state.context_mem_index, mem_manager.key_buffer[layer_id])
|
|
copy_kv_cache_to_dest(v, infer_state.context_mem_index, mem_manager.value_buffer[layer_id])
|
|
|
|
# output = self.output[:batch_size*q_length, :, :]
|
|
output = torch.empty_like(q)
|
|
|
|
if HAS_LIGHTLLM_KERNEL:
|
|
lightllm_bloom_context_attention_fwd(q, k, v, output, alibi, b_start_loc, b_seq_len, max_input_len)
|
|
else:
|
|
bloom_context_attn_fwd(q, k, v, output, b_start_loc, b_seq_len, max_input_len, alibi)
|
|
|
|
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
|
else:
|
|
# query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
|
# need shape: batch_size, H, D_HEAD (q_length == 1), input q shape : (batch_size, q_length(1), H, D_HEAD)
|
|
assert q_length == 1, "for non-context process, we only support q_length == 1"
|
|
q = query_layer.reshape(-1, H, D_HEAD)
|
|
|
|
if infer_state.decode_is_contiguous:
|
|
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
|
cache_k = infer_state.cache_manager.key_buffer[layer_id][
|
|
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
|
]
|
|
cache_v = infer_state.cache_manager.value_buffer[layer_id][
|
|
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
|
|
]
|
|
cache_k.copy_(k)
|
|
cache_v.copy_(v)
|
|
else:
|
|
# if decode is not contiguous, use triton kernel to copy key and value cache
|
|
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head]
|
|
copy_kv_cache_to_dest(k, infer_state.decode_mem_index, mem_manager.key_buffer[layer_id])
|
|
copy_kv_cache_to_dest(v, infer_state.decode_mem_index, mem_manager.value_buffer[layer_id])
|
|
|
|
b_start_loc = infer_state.start_loc
|
|
b_loc = infer_state.block_loc
|
|
b_seq_len = infer_state.seq_len
|
|
output = torch.empty_like(q)
|
|
token_attention_fwd(
|
|
q,
|
|
mem_manager.key_buffer[layer_id],
|
|
mem_manager.value_buffer[layer_id],
|
|
output,
|
|
b_loc,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
infer_state.max_len_in_batch,
|
|
alibi,
|
|
)
|
|
|
|
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
|
|
|
# NOTE: always set present as none for now, instead of returning past key value to the next decoding,
|
|
# we create the past key value pair from the cache manager
|
|
present = None
|
|
|
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
|
slices = self.hidden_size / self.pretraining_tp
|
|
output_tensor = torch.zeros_like(context_layer)
|
|
for i in range(self.pretraining_tp):
|
|
output_tensor = output_tensor + F.linear(
|
|
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
|
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
|
)
|
|
else:
|
|
output_tensor = self.dense(context_layer)
|
|
|
|
# dropout is not required here during inference
|
|
output_tensor = residual + output_tensor
|
|
|
|
outputs = (output_tensor, present)
|
|
assert output_attentions is False, "we do not support output_attentions at this time"
|
|
|
|
return outputs
|