import math import warnings from typing import Optional, Tuple, Union import torch import torch.distributed as dist from torch.nn import CrossEntropyLoss from torch.nn import functional as F from transformers.models.bloom.modeling_bloom import ( BaseModelOutputWithPastAndCrossAttentions, BloomAttention, BloomBlock, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, ) from transformers.utils import logging from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState from colossalai.kernel.triton import bloom_context_attn_fwd, copy_kv_cache_to_dest, token_attention_fwd try: from lightllm.models.bloom.triton_kernel.context_flashattention_nopad import ( context_attention_fwd as lightllm_bloom_context_attention_fwd, ) HAS_LIGHTLLM_KERNEL = True except: HAS_LIGHTLLM_KERNEL = False def generate_alibi(n_head, dtype=torch.float16): """ This method is adapted from `_generate_alibi` function in `lightllm/models/bloom/layer_weights/transformer_layer_weight.py` of the ModelTC/lightllm GitHub repository. This method is originally the `build_alibi_tensor` function in `transformers/models/bloom/modeling_bloom.py` of the huggingface/transformers GitHub repository. """ def get_slopes_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) return [start * start**i for i in range(n)] def get_slopes(n): if math.log2(n).is_integer(): return get_slopes_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) slopes_power_of_2 = get_slopes_power_of_2(closest_power_of_2) slopes_double = get_slopes(2 * closest_power_of_2) slopes_combined = slopes_power_of_2 + slopes_double[0::2][: n - closest_power_of_2] return slopes_combined slopes = get_slopes(n_head) return torch.tensor(slopes, dtype=dtype) class BloomInferenceForwards: """ This class serves a micro library for bloom inference forwards. We intend to replace the forward methods for BloomForCausalLM, BloomModel, BloomBlock, and BloomAttention, as well as prepare_inputs_for_generation method for BloomForCausalLM. For future improvement, we might want to skip replacing methods for BloomForCausalLM, and call BloomModel.forward iteratively in TpInferEngine """ @staticmethod def bloom_model_forward( self: BloomModel, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, infer_state: Optional[BatchInferState] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: logger = logging.get_logger(__name__) if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") # still need to keep past_key_values to fit original forward flow if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # NOTE determine if BatchInferState is passed in via arg # if not, get the attr binded to the model # We might wantto remove setattr later if infer_state is None: assert hasattr(self, "infer_state") infer_state = self.infer_state # infer_state.cache_manager = self.cache_manager if infer_state.is_context_stage: past_key_values_length = 0 else: past_key_values_length = infer_state.max_len_in_batch - 1 if use_cache and seq_length != 1: # prefill stage infer_state.is_context_stage = True # set prefill stage, notify attention layer infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num) BatchInferState.init_block_loc( infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index ) else: infer_state.is_context_stage = False alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size) if alloc_mem is not None: infer_state.decode_is_contiguous = True infer_state.decode_mem_index = alloc_mem[0] infer_state.decode_mem_start = alloc_mem[1] infer_state.decode_mem_end = alloc_mem[2] infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index else: print(f" *** Encountered allocation non-contiguous") print(f" infer_state.max_len_in_batch : {infer_state.max_len_in_batch}") infer_state.decode_is_contiguous = False alloc_mem = infer_state.cache_manager.alloc(batch_size) infer_state.decode_mem_index = alloc_mem # infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda") # infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda") infer_state.block_loc[:, infer_state.max_len_in_batch - 1] = infer_state.decode_mem_index if attention_mask is None: attention_mask = torch.ones((batch_size, infer_state.max_len_in_batch), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) # NOTE revise: we might want to store a single 1D alibi(length is #heads) in model, # or store to BatchInferState to prevent re-calculating # When we have multiple process group (e.g. dp together with tp), we need to pass the pg to here # alibi = generate_alibi(self.num_heads).contiguous().cuda() tp_size = dist.get_world_size() curr_tp_rank = dist.get_rank() alibi = ( generate_alibi(self.num_heads * tp_size) .contiguous()[curr_tp_rank * self.num_heads : (curr_tp_rank + 1) * self.num_heads] .cuda() ) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) infer_state.decode_layer_id = 0 for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: # NOTE: currently our KV cache manager does not handle this condition def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, alibi, causal_mask, layer_past, head_mask[i], ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, infer_state=infer_state, ) infer_state.decode_layer_id += 1 hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # update indices of kv cache block # NOT READY FOR PRIME TIME # might want to remove this part, instead, better to pass the BatchInferState from model forward, # and update these information in engine.generate after model foward called infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda") infer_state.seq_len += 1 infer_state.max_len_in_batch += 1 if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, # should always be (None, None, ..., None) hidden_states=all_hidden_states, attentions=all_self_attentions, ) @staticmethod def bloom_for_causal_lm_forward( self: BloomForCausalLM, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, infer_state: Optional[BatchInferState] = None, **deprecated_arguments, ): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ logging.get_logger(__name__) if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = BloomInferenceForwards.bloom_model_forward( self.transformer, input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, infer_state=infer_state, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def bloom_for_causal_lm_prepare_inputs_for_generation( self: BloomForCausalLM, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # only last token for input_ids if past is not None if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) # NOTE we won't use past key values here # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed # if past_key_values[0][0].shape[0] == input_ids.shape[0]: # past_key_values = self._convert_to_bloom_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def bloom_block_forward( self: BloomBlock, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, infer_state: Optional[BatchInferState] = None, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Layer norm post the self attention. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, infer_state=infer_state, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) # Get residual if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output # MLP. output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions @staticmethod def bloom_attention_forward( self: BloomAttention, hidden_states: torch.Tensor, residual: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, infer_state: Optional[BatchInferState] = None, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, H, D_HEAD = query_layer.shape k = key_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1 v = value_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1 mem_manager = infer_state.cache_manager layer_id = infer_state.decode_layer_id if infer_state.is_context_stage: # context process max_input_len = q_length b_start_loc = infer_state.start_loc b_seq_len = infer_state.seq_len[:batch_size] q = query_layer.reshape(-1, H, D_HEAD) copy_kv_cache_to_dest(k, infer_state.context_mem_index, mem_manager.key_buffer[layer_id]) copy_kv_cache_to_dest(v, infer_state.context_mem_index, mem_manager.value_buffer[layer_id]) # output = self.output[:batch_size*q_length, :, :] output = torch.empty_like(q) if HAS_LIGHTLLM_KERNEL: lightllm_bloom_context_attention_fwd(q, k, v, output, alibi, b_start_loc, b_seq_len, max_input_len) else: bloom_context_attn_fwd(q, k, v, output, b_start_loc, b_seq_len, max_input_len, alibi) context_layer = output.view(batch_size, q_length, H * D_HEAD) else: # query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) # need shape: batch_size, H, D_HEAD (q_length == 1), input q shape : (batch_size, q_length(1), H, D_HEAD) assert q_length == 1, "for non-context process, we only support q_length == 1" q = query_layer.reshape(-1, H, D_HEAD) if infer_state.decode_is_contiguous: # if decode is contiguous, then we copy to key cache and value cache in cache manager directly cache_k = infer_state.cache_manager.key_buffer[layer_id][ infer_state.decode_mem_start : infer_state.decode_mem_end, :, : ] cache_v = infer_state.cache_manager.value_buffer[layer_id][ infer_state.decode_mem_start : infer_state.decode_mem_end, :, : ] cache_k.copy_(k) cache_v.copy_(v) else: # if decode is not contiguous, use triton kernel to copy key and value cache # k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head] copy_kv_cache_to_dest(k, infer_state.decode_mem_index, mem_manager.key_buffer[layer_id]) copy_kv_cache_to_dest(v, infer_state.decode_mem_index, mem_manager.value_buffer[layer_id]) b_start_loc = infer_state.start_loc b_loc = infer_state.block_loc b_seq_len = infer_state.seq_len output = torch.empty_like(q) token_attention_fwd( q, mem_manager.key_buffer[layer_id], mem_manager.value_buffer[layer_id], output, b_loc, b_start_loc, b_seq_len, infer_state.max_len_in_batch, alibi, ) context_layer = output.view(batch_size, q_length, H * D_HEAD) # NOTE: always set present as none for now, instead of returning past key value to the next decoding, # we create the past key value pair from the cache manager present = None # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 if self.pretraining_tp > 1 and self.slow_but_exact: slices = self.hidden_size / self.pretraining_tp output_tensor = torch.zeros_like(context_layer) for i in range(self.pretraining_tp): output_tensor = output_tensor + F.linear( context_layer[:, :, int(i * slices) : int((i + 1) * slices)], self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: output_tensor = self.dense(context_layer) # dropout is not required here during inference output_tensor = residual + output_tensor outputs = (output_tensor, present) assert output_attentions is False, "we do not support output_attentions at this time" return outputs