Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

48 lines
1.3 KiB

import torch
from torch import nn
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
epoch = args.epoch
device = args.device
stage_num = args.world_size
chunk = args.chunk
num_microbatches = args.num_microbatches
use_checkpoint = args.use_checkpoint
sample_num = 1024
batch_size = 1024
assert sample_num % batch_size == 0
input_sample = torch.randn((sample_num, feat_num), device=device)
engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
checkpoint=use_checkpoint)
for _ in range(epoch):
_ = engine.forward_backward(input_sample, forward_only=False)
if __name__ == "__main__":
args = parse_args()
rpc_run(args, run_master)