import torch from torch import nn from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine from rpc_test_utils import rpc_run, parse_args, RpcTestModel # global variable for model created feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) epoch = args.epoch device = args.device stage_num = args.world_size chunk = args.chunk num_microbatches = args.num_microbatches use_checkpoint = args.use_checkpoint sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 input_sample = torch.randn((sample_num, feat_num), device=device) engine = OneFOneBPipelineEngine(partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint) for _ in range(epoch): _ = engine.forward_backward(input_sample, forward_only=False) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)