mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
BlueRum
34ca324b0d
|
2 years ago | |
---|---|---|
.. | ||
README.md | 2 years ago | |
requirements.txt | 2 years ago | |
test_ci.sh | 2 years ago | |
train_dummy.py | 2 years ago | |
train_dummy.sh | 2 years ago | |
train_prompts.py | 2 years ago | |
train_prompts.sh | 2 years ago | |
train_reward_model.py | 2 years ago | |
train_rm.sh | 2 years ago |
README.md
Examples
Install requirements
pip install -r requirements.txt
Train with dummy prompt data
This script supports 3 strategies:
- naive
- ddp
- colossalai
It uses random generated prompt data.
Naive strategy only support single GPU training:
python train_dummy.py --strategy naive
# display cli help
python train_dummy.py -h
DDP strategy and ColossalAI strategy support multi GPUs training:
# run DDP on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy ddp
# run ColossalAI on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy colossalai
Train with real prompt data
We use awesome-chatgpt-prompts as example dataset. It is a small dataset with hundreds of prompts.
You should download prompts.csv
first.
This script also supports 3 strategies.
# display cli help
python train_dummy.py -h
# run naive on 1 GPU
python train_prompts.py prompts.csv --strategy naive
# run DDP on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy ddp
# run ColossalAI on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai
Train the reward model
We use rm-static as dataset to train our reward model. It is a dataset of chosen & rejected response of the same prompt.
You can download the dataset from huggingface automatically.
Use these code to train your reward model.
# Naive reward model training
python train_reward_model.py --pretrain <your model path>
# if to use LoRA
python train_reward_model.py --pretrain <your model path> --lora_rank 16
Support Model
GPT
- GPT2-S (s)
- GPT2-M (m)
- GPT2-L (l)
- GPT2-XL (xl)
- GPT2-4B (4b)
- GPT2-6B (6b)
- GPT2-8B (8b)
- GPT2-10B (10b)
- GPT2-12B (12b)
- GPT2-15B (15b)
- GPT2-18B (18b)
- GPT2-20B (20b)
- GPT2-24B (24b)
- GPT2-28B (28b)
- GPT2-32B (32b)
- GPT2-36B (36b)
- GPT2-40B (40b)
- GPT3 (175b)
BLOOM
- BLOOM-560m
- BLOOM-1b1
- BLOOM-3b
- BLOOM-7b
- BLOOM-175b