mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.8 KiB
106 lines
3.8 KiB
import pytest
|
|
import torch
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import LowLevelZeroPlugin
|
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel
|
|
|
|
|
|
def split_ddp_grad(grad, world_size):
|
|
with torch.no_grad():
|
|
grad = grad.clone().detach().flatten()
|
|
padding_size = (world_size - grad.numel() % world_size) % world_size
|
|
if padding_size > 0:
|
|
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
|
splited_grad = grad.split(grad.numel() // world_size)
|
|
return splited_grad
|
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
|
model.train()
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
if criterion:
|
|
y = model(data)
|
|
loss = criterion(y, label)
|
|
else:
|
|
loss = model(data, label)
|
|
loss = loss.float()
|
|
|
|
if isinstance(model, LowLevelZeroModel):
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
return y
|
|
|
|
|
|
def run_zero_test(local_rank, world_size, stage=1):
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
zero_model = MoeModel()
|
|
optimizer = torch.optim.Adam(zero_model.parameters())
|
|
plugin = LowLevelZeroPlugin(stage=stage, precision="fp32")
|
|
booster = Booster(plugin=plugin)
|
|
zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer)
|
|
|
|
torch_model = MoeModel()
|
|
for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
|
torch_param.data.copy_(zero_param.data)
|
|
torch_model = torch_model.cuda()
|
|
grad_handler = MoeGradientHandler(torch_model)
|
|
|
|
# assert zero model
|
|
for (torch_name, torch_param), (zero_name, zero_param) in zip(
|
|
torch_model.named_parameters(), zero_model.module.named_parameters()
|
|
):
|
|
assert zero_name == torch_name
|
|
assert torch.allclose(zero_param.data, torch_param.data)
|
|
|
|
data = torch.randn(16, 4).cuda()
|
|
label = torch.randint(0, 4, (16,)).cuda()
|
|
|
|
torch_out = run_fwd_bwd(torch_model, data, label, criterion, None)
|
|
zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer)
|
|
assert torch.allclose(torch_out, zero_out)
|
|
grad_handler.handle_gradient()
|
|
|
|
for (zero_name, zero_param), (torch_name, torch_param) in zip(
|
|
zero_model.module.named_parameters(), torch_model.named_parameters()
|
|
):
|
|
assert zero_name == torch_name
|
|
zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param))
|
|
if hasattr(zero_param, "moe_info"):
|
|
assert len(zero_grad_list) == 0
|
|
assert torch.allclose(zero_param.grad, torch_param.grad)
|
|
else:
|
|
assert len(zero_grad_list) > 0
|
|
torch_grad_list = split_ddp_grad(torch_param.grad, world_size)
|
|
if stage == 2:
|
|
torch_grad_list = torch_grad_list[local_rank : local_rank + 1]
|
|
assert len(zero_grad_list) == len(torch_grad_list)
|
|
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
|
|
assert torch.allclose(zero_grad, torch_grad)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
MOE_MANAGER.setup(parallel="EP")
|
|
seed_all(42 + rank)
|
|
run_zero_test(rank, world_size, stage=1)
|
|
run_zero_test(rank, world_size, stage=2)
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("world_size", [2])
|
|
@rerun_if_address_is_in_use()
|
|
def test_moe_zero_model(world_size):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_moe_zero_model(world_size=2)
|