import pytest import torch import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import LowLevelZeroPlugin from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel from colossalai.moe.manager import MOE_MANAGER from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.testing.random import seed_all from tests.test_moe.moe_utils import MoeGradientHandler, MoeModel def split_ddp_grad(grad, world_size): with torch.no_grad(): grad = grad.clone().detach().flatten() padding_size = (world_size - grad.numel() % world_size) % world_size if padding_size > 0: grad = torch.nn.functional.pad(grad, [0, padding_size]) splited_grad = grad.split(grad.numel() // world_size) return splited_grad def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, LowLevelZeroModel): optimizer.backward(loss) else: loss.backward() return y def run_zero_test(local_rank, world_size, stage=1): criterion = torch.nn.CrossEntropyLoss() zero_model = MoeModel() optimizer = torch.optim.Adam(zero_model.parameters()) plugin = LowLevelZeroPlugin(stage=stage, precision="fp32") booster = Booster(plugin=plugin) zero_model, optimizer, _, _, _ = booster.boost(zero_model, optimizer) torch_model = MoeModel() for zero_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()): torch_param.data.copy_(zero_param.data) torch_model = torch_model.cuda() grad_handler = MoeGradientHandler(torch_model) # assert zero model for (torch_name, torch_param), (zero_name, zero_param) in zip( torch_model.named_parameters(), zero_model.module.named_parameters() ): assert zero_name == torch_name assert torch.allclose(zero_param.data, torch_param.data) data = torch.randn(16, 4).cuda() label = torch.randint(0, 4, (16,)).cuda() torch_out = run_fwd_bwd(torch_model, data, label, criterion, None) zero_out = run_fwd_bwd(zero_model, data, label, criterion, optimizer) assert torch.allclose(torch_out, zero_out) grad_handler.handle_gradient() for (zero_name, zero_param), (torch_name, torch_param) in zip( zero_model.module.named_parameters(), torch_model.named_parameters() ): assert zero_name == torch_name zero_grad_list = optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(zero_param)) if hasattr(zero_param, "moe_info"): assert len(zero_grad_list) == 0 assert torch.allclose(zero_param.grad, torch_param.grad) else: assert len(zero_grad_list) > 0 torch_grad_list = split_ddp_grad(torch_param.grad, world_size) if stage == 2: torch_grad_list = torch_grad_list[local_rank : local_rank + 1] assert len(zero_grad_list) == len(torch_grad_list) for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list): assert torch.allclose(zero_grad, torch_grad) def run_dist(rank, world_size, port): colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") MOE_MANAGER.setup(parallel="EP") seed_all(42 + rank) run_zero_test(rank, world_size, stage=1) run_zero_test(rank, world_size, stage=2) @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_moe_zero_model(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_moe_zero_model(world_size=2)