mirror of https://github.com/hpcaitech/ColossalAI
230 lines
11 KiB
Python
230 lines
11 KiB
Python
import os
|
|
from typing import Any, Dict, List
|
|
|
|
import gpt_evaluate
|
|
import metrics
|
|
import unieval
|
|
from utils import analyze_automatic_results, get_data_per_category, save_automatic_results
|
|
|
|
|
|
class Evaluator(object):
|
|
"""
|
|
A class named Evaluator includes GPT-3.5/GPT-4 evaluation
|
|
and automatic evaluation
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
params: Dict[str, Any],
|
|
battle_prompt: Dict[str, Any],
|
|
gpt_evaluation_prompt: Dict[str, Any],
|
|
gpt_model: str,
|
|
language: str,
|
|
path_for_UniEval: Dict[str, str],
|
|
gpt_with_reference: bool,
|
|
) -> None:
|
|
self.params = params
|
|
self.battle_prompt = battle_prompt
|
|
self.gpt_evaluation_prompt = gpt_evaluation_prompt
|
|
self.gpt_model = gpt_model
|
|
self.language = language
|
|
self.path_for_UniEval = path_for_UniEval
|
|
self.gpt_with_reference = gpt_with_reference
|
|
self.automatic_metric_stats = dict()
|
|
self.unieval_metric_stats = dict()
|
|
self.gpt_evaluation_results = dict()
|
|
self.battle_results = []
|
|
|
|
def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None:
|
|
"""
|
|
Comparison between two models using GPT-4 as the reviewer.
|
|
"""
|
|
|
|
self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt)
|
|
|
|
def evaluate(self, answers: List[Dict], targets: List[Dict]) -> None:
|
|
"""
|
|
A comprehensive evaluation of the answers from the model.
|
|
The function evaluates the model's performance from different perspectives
|
|
using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
|
|
|
|
The metrics will be decided by the config file.
|
|
|
|
"""
|
|
|
|
def switch(metric, language):
|
|
if metric == "BLEU":
|
|
return metrics.bleu_score(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "ROUGE":
|
|
return metrics.rouge_score(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "Distinct":
|
|
return metrics.distinct_score(preds=predicts_list, language=language)
|
|
elif metric == "BERTScore":
|
|
return metrics.bert_score(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "Precision":
|
|
return metrics.precision(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "Recall":
|
|
return metrics.recall(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "F1 score":
|
|
return metrics.F1_score(preds=predicts_list, targets=targets_list, language=language)
|
|
elif metric == "CHRF":
|
|
return metrics.chrf_score(preds=predicts_list, targets=targets_list, language=language)
|
|
else:
|
|
raise ValueError(f"Unexpected metric")
|
|
|
|
answers_per_category = get_data_per_category(answers, list(self.params.keys()))
|
|
targets_per_category = get_data_per_category(targets, list(self.params.keys()))
|
|
|
|
# automatic evaluation
|
|
for category in self.params:
|
|
if len(answers_per_category[category]) == 0:
|
|
print(f"Category {category} specified in your config doesn't have corresponding answers!")
|
|
continue
|
|
|
|
if self.params[category].get("Metrics", None) is None:
|
|
continue
|
|
|
|
category_metrics = self.params[category]["Metrics"]
|
|
self.automatic_metric_stats[category] = {}
|
|
|
|
targets_list = [
|
|
target["target"] if target["target"] else target["output"] for target in targets_per_category[category]
|
|
]
|
|
predicts_list = [answer["output"] for answer in answers_per_category[category]]
|
|
|
|
for metric in category_metrics:
|
|
self.automatic_metric_stats[category].update(switch(metric=metric, language=self.language))
|
|
|
|
# UniEval evaluation
|
|
# self.unieval_metric_stats's key is "task" instead of "category".
|
|
# Iterating "task" first will avoid repeated loading models because one task corresponds to one UniEval model.
|
|
# If key is "category", different models will be loaded for multiple times across categories because the user may require different task(models) to evaluate one category.
|
|
for category in self.params:
|
|
if len(answers_per_category[category]) == 0:
|
|
print(f"Category {category} specified in your config doesn't have corresponding answers!")
|
|
continue
|
|
|
|
if self.params[category].get("UniEval", None) is None:
|
|
continue
|
|
|
|
if self.params[category]["UniEval"] and self.language == "cn":
|
|
raise Exception(
|
|
"UniEval doesn't support Chinese! Please remove UniEval config in your Chinese config file."
|
|
)
|
|
|
|
category_metrics = self.params[category]["UniEval"]
|
|
|
|
for task, metric in [tuple(category_metric.split("-")) for category_metric in category_metrics]:
|
|
if self.unieval_metric_stats.get(task, None) is None:
|
|
self.unieval_metric_stats[task] = {category: {metric: 0}}
|
|
elif self.unieval_metric_stats[task].get(category, None) is None:
|
|
self.unieval_metric_stats[task][category] = {metric: 0}
|
|
else:
|
|
self.unieval_metric_stats[task][category][metric] = 0
|
|
|
|
for task in self.unieval_metric_stats:
|
|
if self.path_for_UniEval is None:
|
|
raise Exception(f"Please specify the path for UniEval model in the config file!")
|
|
|
|
if self.path_for_UniEval.get(task, None) is None:
|
|
raise Exception(f"Please specify the model path for task {task} in the config file!")
|
|
|
|
print(f"Load UniEval model for task {task}.")
|
|
|
|
uni_evaluator = unieval.get_evaluator(task, model_name_or_path=self.path_for_UniEval[task])
|
|
for category in self.unieval_metric_stats[task]:
|
|
targets_list = [
|
|
target["target"] if target["target"] else target["output"]
|
|
for target in targets_per_category[category]
|
|
]
|
|
predicts_list = [answer["output"] for answer in answers_per_category[category]]
|
|
sources_list = [answer["instruction"] + answer["input"] for answer in answers_per_category[category]]
|
|
|
|
data = unieval.convert_data_to_unieval_format(predicts_list, sources_list, targets_list)
|
|
scores = uni_evaluator.evaluate(
|
|
data, category, dims=list(self.unieval_metric_stats[task][category].keys()), overall=False
|
|
)
|
|
avg_scores = unieval.calculate_average_score(scores)
|
|
|
|
self.unieval_metric_stats[task][category].update(avg_scores)
|
|
|
|
# gpt evaluation
|
|
for category in self.params:
|
|
if len(answers_per_category[category]) == 0:
|
|
print(f"Category {category} specified in your config doesn't have corresponding answers!")
|
|
continue
|
|
|
|
if self.params[category].get("GPT", None) is None:
|
|
continue
|
|
|
|
category_metrics = self.params[category]["GPT"]
|
|
|
|
prompt = self.gpt_evaluation_prompt.get(category, None)
|
|
if prompt is None:
|
|
print(f"No prompt for category {category}! Use prompt for category general now.")
|
|
prompt = self.gpt_evaluation_prompt["general"]
|
|
|
|
self.gpt_evaluation_results[category] = gpt_evaluate.evaluate(
|
|
answers_per_category[category],
|
|
prompt,
|
|
category_metrics,
|
|
category,
|
|
self.gpt_model,
|
|
self.language,
|
|
references=targets_per_category[category] if self.gpt_with_reference else None,
|
|
)
|
|
|
|
def save(self, path: str, model_name_list: List[str]) -> None:
|
|
"""
|
|
Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics.
|
|
|
|
"""
|
|
|
|
if len(model_name_list) == 2:
|
|
save_path = os.path.join(path, "gpt_evaluate", "battle_results")
|
|
gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path)
|
|
else:
|
|
if self.automatic_metric_stats:
|
|
# Save evaluation results for automatic metrics
|
|
automatic_base_save_path = os.path.join(path, "automatic_results")
|
|
automatic_results_save_path = os.path.join(automatic_base_save_path, "evaluation_results")
|
|
|
|
save_automatic_results(model_name_list[0], self.automatic_metric_stats, automatic_results_save_path)
|
|
|
|
# Save charts and csv.
|
|
automatic_analyses_save_path = os.path.join(automatic_base_save_path, "evaluation_analyses")
|
|
analyze_automatic_results(automatic_results_save_path, automatic_analyses_save_path)
|
|
|
|
if self.unieval_metric_stats:
|
|
# Save evaluation results for UniEval metrics
|
|
unieval_base_save_path = os.path.join(path, "unieval_results")
|
|
unieval_results_save_path = os.path.join(unieval_base_save_path, "evaluation_results")
|
|
|
|
unieval.save_unieval_results(model_name_list[0], self.unieval_metric_stats, unieval_results_save_path)
|
|
|
|
# Save charts and csv.
|
|
unieval_analyses_save_path = os.path.join(unieval_base_save_path, "evaluation_analyses")
|
|
unieval.analyze_unieval_results(unieval_results_save_path, unieval_analyses_save_path)
|
|
|
|
if self.gpt_evaluation_results:
|
|
# Save evaluation results for GPT evaluation metrics.
|
|
gpt_base_save_path = os.path.join(path, "gpt_evaluate", "gpt_evaluate_results")
|
|
gpt_evaluation_results_save_path = os.path.join(gpt_base_save_path, "evaluation_results")
|
|
|
|
all_evaluations = gpt_evaluate.save_gpt_evaluation_results(
|
|
model_name_list[0], self.gpt_evaluation_results, gpt_evaluation_results_save_path
|
|
)
|
|
|
|
# Start to calculate scores and save statistics.
|
|
gpt_evaluation_statistics_save_path = os.path.join(gpt_base_save_path, "evaluation_statistics")
|
|
gpt_evaluate.save_gpt_evaluation_statistics(
|
|
model_name_list[0], all_evaluations, gpt_evaluation_statistics_save_path
|
|
)
|
|
|
|
# Save charts and csv.
|
|
gpt_evaluation_analyses_save_path = os.path.join(gpt_base_save_path, "evaluation_analyses")
|
|
gpt_evaluate.analyze_gpt_evaluation_statistics(
|
|
gpt_evaluation_statistics_save_path, gpt_evaluation_analyses_save_path
|
|
)
|