import os from typing import Any, Dict, List import gpt_evaluate import metrics import unieval from utils import analyze_automatic_results, get_data_per_category, save_automatic_results class Evaluator(object): """ A class named Evaluator includes GPT-3.5/GPT-4 evaluation and automatic evaluation """ def __init__( self, params: Dict[str, Any], battle_prompt: Dict[str, Any], gpt_evaluation_prompt: Dict[str, Any], gpt_model: str, language: str, path_for_UniEval: Dict[str, str], gpt_with_reference: bool, ) -> None: self.params = params self.battle_prompt = battle_prompt self.gpt_evaluation_prompt = gpt_evaluation_prompt self.gpt_model = gpt_model self.language = language self.path_for_UniEval = path_for_UniEval self.gpt_with_reference = gpt_with_reference self.automatic_metric_stats = dict() self.unieval_metric_stats = dict() self.gpt_evaluation_results = dict() self.battle_results = [] def battle(self, answers1: List[Dict], answers2: List[Dict]) -> None: """ Comparison between two models using GPT-4 as the reviewer. """ self.battle_results = gpt_evaluate.battle(answers1, answers2, self.battle_prompt) def evaluate(self, answers: List[Dict], targets: List[Dict]) -> None: """ A comprehensive evaluation of the answers from the model. The function evaluates the model's performance from different perspectives using GPT-3.5, GPT-4, and off-the-shelf evaluation metrics. The metrics will be decided by the config file. """ def switch(metric, language): if metric == "BLEU": return metrics.bleu_score(preds=predicts_list, targets=targets_list, language=language) elif metric == "ROUGE": return metrics.rouge_score(preds=predicts_list, targets=targets_list, language=language) elif metric == "Distinct": return metrics.distinct_score(preds=predicts_list, language=language) elif metric == "BERTScore": return metrics.bert_score(preds=predicts_list, targets=targets_list, language=language) elif metric == "Precision": return metrics.precision(preds=predicts_list, targets=targets_list, language=language) elif metric == "Recall": return metrics.recall(preds=predicts_list, targets=targets_list, language=language) elif metric == "F1 score": return metrics.F1_score(preds=predicts_list, targets=targets_list, language=language) elif metric == "CHRF": return metrics.chrf_score(preds=predicts_list, targets=targets_list, language=language) else: raise ValueError(f"Unexpected metric") answers_per_category = get_data_per_category(answers, list(self.params.keys())) targets_per_category = get_data_per_category(targets, list(self.params.keys())) # automatic evaluation for category in self.params: if len(answers_per_category[category]) == 0: print(f"Category {category} specified in your config doesn't have corresponding answers!") continue if self.params[category].get("Metrics", None) is None: continue category_metrics = self.params[category]["Metrics"] self.automatic_metric_stats[category] = {} targets_list = [ target["target"] if target["target"] else target["output"] for target in targets_per_category[category] ] predicts_list = [answer["output"] for answer in answers_per_category[category]] for metric in category_metrics: self.automatic_metric_stats[category].update(switch(metric=metric, language=self.language)) # UniEval evaluation # self.unieval_metric_stats's key is "task" instead of "category". # Iterating "task" first will avoid repeated loading models because one task corresponds to one UniEval model. # If key is "category", different models will be loaded for multiple times across categories because the user may require different task(models) to evaluate one category. for category in self.params: if len(answers_per_category[category]) == 0: print(f"Category {category} specified in your config doesn't have corresponding answers!") continue if self.params[category].get("UniEval", None) is None: continue if self.params[category]["UniEval"] and self.language == "cn": raise Exception( "UniEval doesn't support Chinese! Please remove UniEval config in your Chinese config file." ) category_metrics = self.params[category]["UniEval"] for task, metric in [tuple(category_metric.split("-")) for category_metric in category_metrics]: if self.unieval_metric_stats.get(task, None) is None: self.unieval_metric_stats[task] = {category: {metric: 0}} elif self.unieval_metric_stats[task].get(category, None) is None: self.unieval_metric_stats[task][category] = {metric: 0} else: self.unieval_metric_stats[task][category][metric] = 0 for task in self.unieval_metric_stats: if self.path_for_UniEval is None: raise Exception(f"Please specify the path for UniEval model in the config file!") if self.path_for_UniEval.get(task, None) is None: raise Exception(f"Please specify the model path for task {task} in the config file!") print(f"Load UniEval model for task {task}.") uni_evaluator = unieval.get_evaluator(task, model_name_or_path=self.path_for_UniEval[task]) for category in self.unieval_metric_stats[task]: targets_list = [ target["target"] if target["target"] else target["output"] for target in targets_per_category[category] ] predicts_list = [answer["output"] for answer in answers_per_category[category]] sources_list = [answer["instruction"] + answer["input"] for answer in answers_per_category[category]] data = unieval.convert_data_to_unieval_format(predicts_list, sources_list, targets_list) scores = uni_evaluator.evaluate( data, category, dims=list(self.unieval_metric_stats[task][category].keys()), overall=False ) avg_scores = unieval.calculate_average_score(scores) self.unieval_metric_stats[task][category].update(avg_scores) # gpt evaluation for category in self.params: if len(answers_per_category[category]) == 0: print(f"Category {category} specified in your config doesn't have corresponding answers!") continue if self.params[category].get("GPT", None) is None: continue category_metrics = self.params[category]["GPT"] prompt = self.gpt_evaluation_prompt.get(category, None) if prompt is None: print(f"No prompt for category {category}! Use prompt for category general now.") prompt = self.gpt_evaluation_prompt["general"] self.gpt_evaluation_results[category] = gpt_evaluate.evaluate( answers_per_category[category], prompt, category_metrics, category, self.gpt_model, self.language, references=targets_per_category[category] if self.gpt_with_reference else None, ) def save(self, path: str, model_name_list: List[str]) -> None: """ Save evaluation results of GPT-3.5, GPT-4, and off-the-shelf evaluation metrics. """ if len(model_name_list) == 2: save_path = os.path.join(path, "gpt_evaluate", "battle_results") gpt_evaluate.save_battle_results(self.battle_results, model_name_list[0], model_name_list[1], save_path) else: if self.automatic_metric_stats: # Save evaluation results for automatic metrics automatic_base_save_path = os.path.join(path, "automatic_results") automatic_results_save_path = os.path.join(automatic_base_save_path, "evaluation_results") save_automatic_results(model_name_list[0], self.automatic_metric_stats, automatic_results_save_path) # Save charts and csv. automatic_analyses_save_path = os.path.join(automatic_base_save_path, "evaluation_analyses") analyze_automatic_results(automatic_results_save_path, automatic_analyses_save_path) if self.unieval_metric_stats: # Save evaluation results for UniEval metrics unieval_base_save_path = os.path.join(path, "unieval_results") unieval_results_save_path = os.path.join(unieval_base_save_path, "evaluation_results") unieval.save_unieval_results(model_name_list[0], self.unieval_metric_stats, unieval_results_save_path) # Save charts and csv. unieval_analyses_save_path = os.path.join(unieval_base_save_path, "evaluation_analyses") unieval.analyze_unieval_results(unieval_results_save_path, unieval_analyses_save_path) if self.gpt_evaluation_results: # Save evaluation results for GPT evaluation metrics. gpt_base_save_path = os.path.join(path, "gpt_evaluate", "gpt_evaluate_results") gpt_evaluation_results_save_path = os.path.join(gpt_base_save_path, "evaluation_results") all_evaluations = gpt_evaluate.save_gpt_evaluation_results( model_name_list[0], self.gpt_evaluation_results, gpt_evaluation_results_save_path ) # Start to calculate scores and save statistics. gpt_evaluation_statistics_save_path = os.path.join(gpt_base_save_path, "evaluation_statistics") gpt_evaluate.save_gpt_evaluation_statistics( model_name_list[0], all_evaluations, gpt_evaluation_statistics_save_path ) # Save charts and csv. gpt_evaluation_analyses_save_path = os.path.join(gpt_base_save_path, "evaluation_analyses") gpt_evaluate.analyze_gpt_evaluation_statistics( gpt_evaluation_statistics_save_path, gpt_evaluation_analyses_save_path )