ColossalAI/colossalai/fx/passes/experimental/adding_shape_consistency_pa...

194 lines
9.3 KiB
Python

import builtins
import copy
import operator
from ast import NodeTransformer
from copy import deepcopy
from typing import List
import torch
from torch.fx import symbolic_trace
from torch.fx.node import Node
from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction, CommType, OperationDataType
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.passes.split_module import split_module
from colossalai.tensor.comm_spec import CollectiveCommPattern, CommSpec, _all_reduce, pattern_to_func_dict
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
shape_consistency_manager = ShapeConsistencyManager()
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
origin_sharding_spec = origin_dict[node_index]
target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
def runtime_comm_spec_apply(tensor, comm_actions_dict, node_index, op_data):
comm_action = comm_actions_dict[node_index][op_data]
if isinstance(comm_action.comm_spec, CommSpec):
rst = comm_action.comm_spec.covert_spec_to_action(tensor)
else:
origin_sharding_spec = comm_action.comm_spec['src_spec']
tgt_sharding_spec = comm_action.comm_spec['tgt_spec']
rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec)
return rst
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
# the dict to get origin sharding spec of node
origin_node_sharding_spec_dict = {}
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)):
strategies_vector = node.strategies_vector
setattr(node, 'best_strategy', strategies_vector[strategy_index])
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node)))
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
str(node))
# apply the sharding spec of parameters
for node in nodes:
if node.op == 'call_module':
target_module = node.graph.owning_module.get_submodule(node.target)
for name, param in target_module.named_parameters():
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
if target_sharding_spec.dim_partition_dict != {}:
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
setattr(param, 'sharding_spec', origin_sharding_spec)
param_sharded = torch.nn.Parameter(
shape_consistency_manager.apply_for_autoparallel_runtime(param.data, param.sharding_spec,
target_sharding_spec).detach().clone())
else:
param_sharded = param
setattr(target_module, name, param_sharded)
comm_actions = node.best_strategy.communication_actions
for operation_data, comm_action in comm_actions.items():
comm_spec_to_use = comm_action.comm_spec
if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK:
def wrapper(param, comm_spec):
def hook_fn(grad):
_all_reduce(grad, comm_spec)
param.register_hook(hook_fn)
wrapper(param_sharded, comm_spec_to_use)
sharded_buffer_dict = {}
for name, buffer in target_module.named_buffers():
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
setattr(buffer, 'sharding_spec', origin_sharding_spec)
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec)
sharded_buffer_dict[name] = buffer_sharded
for name, buffer_sharded in sharded_buffer_dict.items():
setattr(target_module, name, buffer_sharded.detach().clone())
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
for index, node in enumerate(nodes):
target_sharding_specs = []
for user_node in node.strategies_vector.successor_nodes:
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
target_sharding_specs.append(target_sharding_spec)
sharding_spec_convert_dict[index] = target_sharding_specs
# the dict to record comm actions of nodes
comm_actions_dict = {}
for index, node in enumerate(nodes):
comm_action_dict = {}
for op_data, comm_action in node.best_strategy.communication_actions.items():
comm_action_dict[op_data.name] = comm_action
comm_actions_dict[index] = comm_action_dict
# add above dicts into graph
for node in nodes:
if node.op != 'placeholder':
with mod_graph.inserting_before(node):
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict')
break
return sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict
def shape_consistency_pass(gm: torch.fx.GraphModule):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
input_dict_node = None
origin_dict_node = None
# mapping the node into the origin graph index
node_to_index_dict = {}
index = 0
for node in nodes:
if node.target == 'sharding_spec_convert_dict':
input_dict_node = node
continue
if node.target == 'origin_node_sharding_spec_dict':
origin_dict_node = node
continue
if node.target == 'comm_actions_dict':
comm_actions_dict_node = node
continue
if not hasattr(node, 'best_strategy'):
continue
node_to_index_dict[node] = index
index += 1
assert input_dict_node is not None
# add shape consistency apply function into graph
for node in nodes:
if not hasattr(node, 'best_strategy') or node.op == 'output':
continue
for user_node in node.strategies_vector.successor_nodes:
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node)
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
origin_index_args = user_node.args.index(node)
new_args = list(user_node.args)
new_args[origin_index_args] = shape_consistency_node
user_node.args = new_args
comm_actions = node.best_strategy.communication_actions
for op_data, comm_action in comm_actions.items():
comm_object = node.args[comm_action.arg_index]
if op_data.type == OperationDataType.PARAM:
continue
if comm_action.comm_type == CommType.BEFORE:
with mod_graph.inserting_before(node):
comm_spec_apply_node = mod_graph.create_node('call_function',
runtime_comm_spec_apply,
args=(comm_object, comm_actions_dict_node,
node_to_index_dict[node], op_data.name))
new_args = list(node.args)
new_args[comm_action.arg_index] = comm_spec_apply_node
node.args = new_args
elif comm_action.comm_type == CommType.AFTER:
with mod_graph.inserting_after(node):
comm_spec_apply_node = mod_graph.create_node('call_function',
runtime_comm_spec_apply,
args=(node, comm_actions_dict_node,
node_to_index_dict[node], op_data.name))
user_list = list(node.users.keys())
for user in user_list:
if user == comm_spec_apply_node:
continue
new_args = list(user.args)
new_args[new_args.index(node)] = comm_spec_apply_node
user.args = tuple(new_args)
# TODO: consider other OperationDataType, such as OperationDataType.OUTPUT
return gm