import builtins import copy import operator from ast import NodeTransformer from copy import deepcopy from typing import List import torch from torch.fx import symbolic_trace from torch.fx.node import Node from colossalai.auto_parallel.tensor_shard.sharding_strategy import CommAction, CommType, OperationDataType from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.passes.split_module import split_module from colossalai.tensor.comm_spec import CollectiveCommPattern, CommSpec, _all_reduce, pattern_to_func_dict from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec shape_consistency_manager = ShapeConsistencyManager() def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index): origin_sharding_spec = origin_dict[node_index] target_sharding_spec = input_dict[node_index][user_node_index] return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) def runtime_comm_spec_apply(tensor, comm_actions_dict, node_index, op_data): comm_action = comm_actions_dict[node_index][op_data] if isinstance(comm_action.comm_spec, CommSpec): rst = comm_action.comm_spec.covert_spec_to_action(tensor) else: origin_sharding_spec = comm_action.comm_spec['src_spec'] tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) return rst def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) # the dict to get origin sharding spec of node origin_node_sharding_spec_dict = {} for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): strategies_vector = node.strategies_vector setattr(node, 'best_strategy', strategies_vector[strategy_index]) setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node))) origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name( str(node)) # apply the sharding spec of parameters for node in nodes: if node.op == 'call_module': target_module = node.graph.owning_module.get_submodule(node.target) for name, param in target_module.named_parameters(): target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) if target_sharding_spec.dim_partition_dict != {}: origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {}) setattr(param, 'sharding_spec', origin_sharding_spec) param_sharded = torch.nn.Parameter( shape_consistency_manager.apply_for_autoparallel_runtime(param.data, param.sharding_spec, target_sharding_spec).detach().clone()) else: param_sharded = param setattr(target_module, name, param_sharded) comm_actions = node.best_strategy.communication_actions for operation_data, comm_action in comm_actions.items(): comm_spec_to_use = comm_action.comm_spec if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK: def wrapper(param, comm_spec): def hook_fn(grad): _all_reduce(grad, comm_spec) param.register_hook(hook_fn) wrapper(param_sharded, comm_spec_to_use) sharded_buffer_dict = {} for name, buffer in target_module.named_buffers(): origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {}) setattr(buffer, 'sharding_spec', origin_sharding_spec) target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec) sharded_buffer_dict[name] = buffer_sharded for name, buffer_sharded in sharded_buffer_dict.items(): setattr(target_module, name, buffer_sharded.detach().clone()) # the dict to get input sharding specs of user node sharding_spec_convert_dict = {} for index, node in enumerate(nodes): target_sharding_specs = [] for user_node in node.strategies_vector.successor_nodes: target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name)) target_sharding_specs.append(target_sharding_spec) sharding_spec_convert_dict[index] = target_sharding_specs # the dict to record comm actions of nodes comm_actions_dict = {} for index, node in enumerate(nodes): comm_action_dict = {} for op_data, comm_action in node.best_strategy.communication_actions.items(): comm_action_dict[op_data.name] = comm_action comm_actions_dict[index] = comm_action_dict # add above dicts into graph for node in nodes: if node.op != 'placeholder': with mod_graph.inserting_before(node): input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict') break return sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict def shape_consistency_pass(gm: torch.fx.GraphModule): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) input_dict_node = None origin_dict_node = None # mapping the node into the origin graph index node_to_index_dict = {} index = 0 for node in nodes: if node.target == 'sharding_spec_convert_dict': input_dict_node = node continue if node.target == 'origin_node_sharding_spec_dict': origin_dict_node = node continue if node.target == 'comm_actions_dict': comm_actions_dict_node = node continue if not hasattr(node, 'best_strategy'): continue node_to_index_dict[node] = index index += 1 assert input_dict_node is not None # add shape consistency apply function into graph for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue for user_node in node.strategies_vector.successor_nodes: user_node_index = user_node.strategies_vector.predecessor_nodes.index(node) with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) origin_index_args = user_node.args.index(node) new_args = list(user_node.args) new_args[origin_index_args] = shape_consistency_node user_node.args = new_args comm_actions = node.best_strategy.communication_actions for op_data, comm_action in comm_actions.items(): comm_object = node.args[comm_action.arg_index] if op_data.type == OperationDataType.PARAM: continue if comm_action.comm_type == CommType.BEFORE: with mod_graph.inserting_before(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(comm_object, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) new_args = list(node.args) new_args[comm_action.arg_index] = comm_spec_apply_node node.args = new_args elif comm_action.comm_type == CommType.AFTER: with mod_graph.inserting_after(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(node, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) user_list = list(node.users.keys()) for user in user_list: if user == comm_spec_apply_node: continue new_args = list(user.args) new_args[new_args.index(node)] = comm_spec_apply_node user.args = tuple(new_args) # TODO: consider other OperationDataType, such as OperationDataType.OUTPUT return gm