mirror of https://github.com/hpcaitech/ColossalAI
140 lines
5.5 KiB
Markdown
140 lines
5.5 KiB
Markdown
# 分布式优化器
|
||
|
||
Author: Wenxuan Tan, Junwen Duan, Renjie Mao
|
||
|
||
**相关论文**
|
||
- [Adafactor: Adaptive Learning Rates with Sublinear Memory Cost](https://arxiv.org/abs/1804.04235)
|
||
- [CAME: Confidence-guided Adaptive Memory Efficient Optimization](https://arxiv.org/abs/2307.02047)
|
||
- [GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection](https://arxiv.org/abs/2403.03507)
|
||
- [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/pdf/1904.00962)
|
||
|
||
## 介绍
|
||
除了广泛采用的Adam和SGD外,许多现代优化器需要逐层统计信息以有效更新参数,因此无法直接应用于模型层在多个设备上分片的并行设置。我们以提供了优化的分布式实现,,并且通过plugin与Tensor Parallel、DDP和ZeRO无缝集成。
|
||
## 优化器
|
||
Adafactor 是一种首次采用非负矩阵分解(NMF)的 Adam 变体,用于减少内存占用。CAME 通过引入一个置信度矩阵来改进 NMF 的效果。GaLore 通过将梯度投影到低秩空间,并使用 8 位块状量化进一步减少内存占用。Lamb 允许使用巨大的批量大小而不失准确性,通过按其 Lipschitz 常数的倒数界定的逐层自适应更新实现
|
||
|
||
|
||
## 使用
|
||
现在我们展示如何使用分布式 Adafactor 与 booster API 结合 Tensor Parallel 和 ZeRO 2。即使您不使用distributed optimizer,plugin 也会自动将optimizer转换为分布式版本以方便使用。
|
||
### step 1. 导包
|
||
|
||
```python
|
||
from transformers import LlamaModel, LlamaConfig
|
||
from colossalai.nn.optimizer.distributed_adafactor import DistributedAdaFactor
|
||
from colossalai.booster import Booster
|
||
from colossalai.booster.plugin import HybridParallelPlugin
|
||
import colossalai
|
||
import torch
|
||
```
|
||
|
||
### step 2. 初始化分布式
|
||
我们需要先初始化分布式环境. 为了展示, 我们使用 `colossal run --nproc_per_node 4`. 更多初始化方式请参考 [Launch Colossal-AI](../basics/launch_colossalai.md)
|
||
|
||
```python
|
||
colossalai.launch_from_torch()
|
||
```
|
||
|
||
### step 3. 初始化模型和优化器
|
||
```python
|
||
configuration = LlamaConfig()
|
||
model = LlamaModel(configuration).cuda()
|
||
criterion = lambda x: x.mean()
|
||
dist_optim = DistributedAdaFactor(model.parameters())
|
||
|
||
```
|
||
|
||
### step 4.初始化booster和plugin
|
||
|
||
```python
|
||
plugin = HybridParallelPlugin(tp_size=2, zero_stage=2, pp_size=1, enable_all_optimization=True)
|
||
booster = Booster(plugin=plugin)
|
||
# You should also pass in your own dataset.
|
||
model, dist_optim, criterion, dataloader, _ = booster.boost(model, dist_optim, criterion)
|
||
|
||
```
|
||
### step 5.训练
|
||
```python
|
||
steps = 10
|
||
for step in range(steps):
|
||
input_ids = torch.ones(1, 100, device="cuda", dtype=torch.int)
|
||
attention_mask = input_ids.clone()
|
||
outputs = model(input_ids.cuda(), attention_mask.cuda())
|
||
loss = criterion(outputs.last_hidden_state)
|
||
booster.backward(loss, dist_optim)
|
||
dist_optim.step()
|
||
dist_optim.zero_grad()
|
||
```
|
||
### GaLore的特殊初期
|
||
对于 GaLore,我们需要为每个参数组指定投影rank,以及量化和分页优化器参数。有关量化的详细信息,请参考 bitandbytes.
|
||
```python
|
||
from colossalai.nn.optimizer.galore import get_galore_param_groups
|
||
from colossalai.nn.optimizer import DistGaloreAwamW
|
||
optim = DistGaloreAwamW(
|
||
get_galore_param_groups(model, decay=1e-2, rank=8),
|
||
lr=lr,
|
||
betas=(beta1, beta2),
|
||
eps=eps,
|
||
nbits=8,
|
||
percentile_clipping=100,
|
||
block_wise=True,
|
||
min_8bit_size=4096,
|
||
)
|
||
```
|
||
|
||
## 兼容性
|
||
<table>
|
||
<tr>
|
||
<th nowrap="nowrap">Optimizer/Plugin</th>
|
||
<th nowrap="nowrap" align="center">Hybrid Parallel Plugin</th>
|
||
<th nowrap="nowrap" align="center">Low Level Zero Plugin</th>
|
||
<th nowrap="nowrap" align="center">Torch DDP Plugin</th>
|
||
<th nowrap="nowrap" align="center">Gemini Plugin</th>
|
||
<th nowrap="nowrap" align="center">Moe Hybrid Plugin</th>
|
||
</tr>
|
||
<tr>
|
||
<td nowrap="nowrap" align="center" title="Lamb">Lamb</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
</tr>
|
||
<tr>
|
||
<td nowrap="nowrap" align="center" title="GaLore">GaLore</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
</tr>
|
||
<tr>
|
||
<td nowrap="nowrap" align="center" title="Adafactor">Adafactor</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
</tr>
|
||
<tr>
|
||
<td nowrap="nowrap" align="center" title="CAME">CAME</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">✔️</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
<td nowrap="nowrap" align="center">❌</td>
|
||
</tr>
|
||
<tr>
|
||
<td colspan="39"></td>
|
||
</tr>
|
||
</table>
|
||
|
||
|
||
<!-- doc-test-command: colossalai run --nproc_per_node 4 distributed_optimizers.py -->
|
||
|
||
## API 参考
|
||
|
||
{{ autodoc:colossalai.nn.optimizer.distributed_adafactor.DistributedAdaFactor }}
|
||
{{ autodoc:colossalai.nn.optimizer.distributed_lamb.DistributedLamb }}
|
||
{{ autodoc:colossalai.nn.optimizer.distributed_galore.DistGaloreAwamW }}
|
||
{{ autodoc:colossalai.nn.optimizer.distributed_came.DistributedCAME }}
|