mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.5 KiB
92 lines
3.5 KiB
import pytest |
|
import torch |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import set_seed |
|
from colossalai.zero import GeminiDDP |
|
from colossalai.zero.gemini.chunk import search_chunk_configuration |
|
from tests.kit.model_zoo import model_zoo |
|
|
|
PLACEMENT_CONFIGS = [ |
|
{"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 |
|
{"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 |
|
{"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half |
|
{"placement_policy": "auto"}, |
|
] |
|
|
|
|
|
def ignore_the_first_parameter(model: torch.nn.Module): |
|
for name, param in model.named_parameters(): |
|
print(f"parameter `{name}` is set ignored") |
|
GeminiDDP.set_params_to_ignore([param]) |
|
return |
|
|
|
|
|
@parameterize("placement_config", PLACEMENT_CONFIGS) |
|
@parameterize("keep_gathered", [True, False]) |
|
@parameterize("model_name", ["transformers_gpt_lm", "transformers_bert_for_sequence_classification"]) |
|
@parameterize("master_weights", [False, True]) |
|
def exam_state_dict(placement_config, keep_gathered, model_name: str, master_weights: bool): |
|
set_seed(431) |
|
model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values())) |
|
|
|
model = model_builder() |
|
|
|
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2 |
|
|
|
torch_model = model_builder() |
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
|
torch_p.data.copy_(p.data) |
|
|
|
world_size = torch.distributed.get_world_size() |
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) |
|
config_dict[world_size]["chunk_size"] = 5000 |
|
config_dict[world_size]["keep_gathered"] = keep_gathered |
|
model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True, master_weights=master_weights) |
|
model.train() |
|
|
|
zero_dict = model.state_dict(only_rank_0=False) |
|
torch_dict = torch_model.state_dict() |
|
|
|
for key, value in torch_dict.items(): |
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) |
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) |
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) |
|
|
|
# check load state dict |
|
model.load_state_dict(torch_dict, strict=False) |
|
zero_dict = model.state_dict(only_rank_0=False) |
|
|
|
for key, value in torch_dict.items(): |
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) |
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) |
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) |
|
|
|
# check state dict shard |
|
accumulated_keys = set() |
|
# ensure number of shards > 1 |
|
for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False): |
|
for key, value in shard.items(): |
|
assert key not in accumulated_keys, f"key `{key}` is duplicated." |
|
accumulated_keys.add(key) |
|
assert key in zero_dict, f"{key} not in ZeRO dictionary." |
|
assert torch.equal(value, zero_dict[key]), f"{key} not equal." |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
config = {} |
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
exam_state_dict() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [1, 4]) |
|
@rerun_if_address_is_in_use() |
|
def test_zero_ddp(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_zero_ddp(1)
|
|
|