import pytest import torch from torch.testing import assert_close import colossalai from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.zero import GeminiDDP from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.kit.model_zoo import model_zoo PLACEMENT_CONFIGS = [ {"placement_policy": "static", "shard_param_frac": 0.0}, # zero2 {"placement_policy": "static", "shard_param_frac": 1.0}, # zero3 {"placement_policy": "static", "shard_param_frac": 0.5}, # zero3-half {"placement_policy": "auto"}, ] def ignore_the_first_parameter(model: torch.nn.Module): for name, param in model.named_parameters(): print(f"parameter `{name}` is set ignored") GeminiDDP.set_params_to_ignore([param]) return @parameterize("placement_config", PLACEMENT_CONFIGS) @parameterize("keep_gathered", [True, False]) @parameterize("model_name", ["transformers_gpt_lm", "transformers_bert_for_sequence_classification"]) @parameterize("master_weights", [False, True]) def exam_state_dict(placement_config, keep_gathered, model_name: str, master_weights: bool): set_seed(431) model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values())) model = model_builder() model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2 torch_model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = keep_gathered model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True, master_weights=master_weights) model.train() zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) # check load state dict model.load_state_dict(torch_dict, strict=False) zero_dict = model.state_dict(only_rank_0=False) for key, value in torch_dict.items(): assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) # check state dict shard accumulated_keys = set() # ensure number of shards > 1 for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False): for key, value in shard.items(): assert key not in accumulated_keys, f"key `{key}` is duplicated." accumulated_keys.add(key) assert key in zero_dict, f"{key} not in ZeRO dictionary." assert torch.equal(value, zero_dict[key]), f"{key} not equal." def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") exam_state_dict() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_zero_ddp(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_zero_ddp(1)