Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

71 lines
2.5 KiB

import pytest
import torch
import torch.distributed as dist
from colossalai.accelerator import get_accelerator
from colossalai.legacy.communication import all_gather, all_reduce, reduce_scatter
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.initialize import launch
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1)))
SIZE = 8
def check_all_gather():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_accelerator().get_current_device())
print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor))
tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print("After: Rank {0} - {1}".format(dist.get_rank(), tensor))
op.wait()
print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_reduce_scatter():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_accelerator().get_current_device())
print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor))
tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print("After: Rank {0} - {1}".format(dist.get_rank(), tensor))
op.wait()
print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_all_reduce():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_accelerator().get_current_device())
print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor))
tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True)
print("After: Rank {0} - {1}".format(dist.get_rank(), tensor))
op.wait()
print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_layer(rank, world_size, port):
launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
assert dist.get_rank() == gpc.get_global_rank()
print("Rank {} / {}".format(dist.get_rank(), dist.get_world_size()))
check_all_gather()
check_reduce_scatter()
check_all_reduce()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_comm():
spawn(check_layer, 4)
if __name__ == "__main__":
test_comm()