import pytest import torch import torch.distributed as dist from colossalai.accelerator import get_accelerator from colossalai.legacy.communication import all_gather, all_reduce, reduce_scatter from colossalai.legacy.context import ParallelMode from colossalai.legacy.core import global_context as gpc from colossalai.legacy.initialize import launch from colossalai.testing import rerun_if_address_is_in_use, spawn CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1))) SIZE = 8 def check_all_gather(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_accelerator().get_current_device()) print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor)) tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True) print("After: Rank {0} - {1}".format(dist.get_rank(), tensor)) op.wait() print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_reduce_scatter(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_accelerator().get_current_device()) print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor)) tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True) print("After: Rank {0} - {1}".format(dist.get_rank(), tensor)) op.wait() print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_all_reduce(): tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)]) tensor = tensor.to(get_accelerator().get_current_device()) print("Before: Rank {0} - {1}".format(dist.get_rank(), tensor)) tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True) print("After: Rank {0} - {1}".format(dist.get_rank(), tensor)) op.wait() print("Complete: Rank {0} - {1}".format(dist.get_rank(), tensor)) torch.cuda.synchronize() def check_layer(rank, world_size, port): launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") assert dist.get_rank() == gpc.get_global_rank() print("Rank {} / {}".format(dist.get_rank(), dist.get_world_size())) check_all_gather() check_reduce_scatter() check_all_reduce() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_if_address_is_in_use() def test_comm(): spawn(check_layer, 4) if __name__ == "__main__": test_comm()