Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

55 lines
2.0 KiB

from argparse import ArgumentParser
import torch
from model.modeling_openmoe import OpenMoeForCausalLM, set_openmoe_args
from transformers import T5Tokenizer
from transformers.models.llama import LlamaConfig
def parse_args():
parser = ArgumentParser()
parser.add_argument("--model", default="base", type=str, help="model path", choices=["base", "8b", "test"])
return parser.parse_args()
def inference(args):
tokenizer = T5Tokenizer.from_pretrained("google/umt5-small")
if args.model == "test":
config = LlamaConfig.from_pretrained("hpcai-tech/openmoe-base")
set_openmoe_args(
config, num_experts=config.num_experts, moe_layer_interval=config.moe_layer_interval, enable_kernel=True
)
model = OpenMoeForCausalLM(config)
else:
config = LlamaConfig.from_pretrained(f"hpcai-tech/openmoe-{args.model}")
set_openmoe_args(
config, num_experts=config.num_experts, moe_layer_interval=config.moe_layer_interval, enable_kernel=False
)
model = OpenMoeForCausalLM.from_pretrained(f"hpcai-tech/openmoe-{args.model}", config=config)
model = model.eval().bfloat16()
model = model.to(torch.cuda.current_device())
input_str = """```
y = list(map(int, ['1', 'hello', '2']))
```
What error does this program produce?
ValueError: invalid literal for int() with base 10: 'hello'
```
sum = 0
for i in range(100):
sum += i
```
What is the value of sum immediately after the 10th time line 3 is executed?"""
# print("model config: ", model.config)
input_ids = tokenizer("<pad>" + input_str, return_tensors="pt", add_special_tokens=False)
input_ids = input_ids.input_ids.to(torch.cuda.current_device())
generation_output = model.generate(input_ids, use_cache=True, do_sample=True, max_new_tokens=64)
out = tokenizer.decode(generation_output[0], skip_special_tokens=False)
print(f"output: \n{out}\n")
if __name__ == "__main__":
args = parse_args()
inference(args)