mirror of https://github.com/hpcaitech/ColossalAI
315 lines
12 KiB
Python
315 lines
12 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
try:
|
|
import colossal_C
|
|
except:
|
|
print('Colossalai should be built with cuda extension to use the FP16 optimizer')
|
|
|
|
from torch.optim import Optimizer
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.utils import (copy_tensor_parallel_attributes, clip_grad_norm_fp32, multi_tensor_applier)
|
|
from torch.distributed import ProcessGroup
|
|
from .grad_scaler import BaseGradScaler
|
|
from ._utils import has_inf_or_nan, zero_gard_by_list
|
|
|
|
__all__ = ['FP16Optimizer']
|
|
|
|
|
|
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
|
|
"""
|
|
adapted from Megatron-LM (https://github.com/NVIDIA/Megatron-LM)
|
|
|
|
Use multi-tensor-applier to copy values from one list to another.
|
|
We don't have a blfoat16 implementation so for now if the overflow_buf
|
|
is not provided, we default back to simple loop copy to be compatible
|
|
with bfloat16.
|
|
"""
|
|
if overflow_buf:
|
|
overflow_buf.fill_(0)
|
|
# Scaling with factor `1.0` is equivalent to copy.
|
|
multi_tensor_applier(colossal_C.multi_tensor_scale, overflow_buf, [this, that], 1.0)
|
|
else:
|
|
for this_, that_ in zip(this, that):
|
|
that_.copy_(this_)
|
|
|
|
|
|
class FP16Optimizer(Optimizer):
|
|
"""Float16 optimizer for fp16 and bf16 data types.
|
|
|
|
:param optimizer: base optimizer such as Adam or SGD
|
|
:type optimizer: torch.optim.Optimizer
|
|
:param clip_grad: clip gradeints with this global L2 norm. Note that clipping is ignored if clip_grad == 0
|
|
:type param clip_grad: float
|
|
:param log_num_zeros_in_grad: return number of zeros in the gradients.
|
|
:type log_num_zeros_in_grad: bool
|
|
:param initial_scale: initial scale of gradient scaler
|
|
:type initial_scale: int
|
|
:param growth_factor: the growth rate of loss scale
|
|
:type growth_factor: int
|
|
:param backoff_factor: the decrease rate of loss scale
|
|
:type backoff_factor: float
|
|
:param hysterisis: delay shift in dynamic loss scaling
|
|
:type hysterisis: int
|
|
:param max_scale: maximum loss scale allowed
|
|
:type max_scale: int
|
|
:param verbose: if set to `True`, will print debug info
|
|
:type verbose: bool
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer: Optimizer,
|
|
grad_scaler: BaseGradScaler,
|
|
verbose: bool = False,
|
|
clip_grad_norm=0,
|
|
dp_process_group: ProcessGroup = None,
|
|
mp_process_group: ProcessGroup = None):
|
|
# have a defaults for compatibility with pytorch optim
|
|
self._optimizer = optimizer
|
|
self._defaults = optimizer.defaults
|
|
|
|
# fp16-related params
|
|
assert isinstance(grad_scaler, BaseGradScaler)
|
|
self._grad_scaler = grad_scaler
|
|
self._found_overflow = torch.cuda.FloatTensor([0.0])
|
|
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
|
|
|
|
# misc params
|
|
self._clip_grad_max_norm = clip_grad_norm
|
|
|
|
# get process group
|
|
def _get_process_group(parallel_mode):
|
|
if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA):
|
|
return gpc.get_group(ParallelMode.DATA)
|
|
else:
|
|
return None
|
|
|
|
if dp_process_group is None:
|
|
dp_process_group = _get_process_group(ParallelMode.DATA)
|
|
if mp_process_group is None:
|
|
mp_process_group = _get_process_group(ParallelMode.MODEL)
|
|
|
|
self._dp_process_group = dp_process_group
|
|
self._mp_process_group = mp_process_group
|
|
|
|
# we maintain three groups of parameters
|
|
# so that the model can have a mixture
|
|
# of fp16 and fp32 params
|
|
# fp16_param_groups: the fp16 params of the model
|
|
# fp32_master_param_groups: the fp32 params cast from the fp16 param of the model
|
|
# fp32_param_groups: the fp32 params of the model
|
|
# NOTE:
|
|
# 1. fp16_param_groups and fp32_master_param_groups have one-to-one correspondence
|
|
# 2. fp32_param_groups and fp16_param_groups are exclusive of each other
|
|
self._fp16_param_groups = []
|
|
self._fp32_master_param_groups = []
|
|
self._fp32_param_groups = []
|
|
|
|
# For all the groups in the original optimizer:
|
|
for param_group in self._optimizer.param_groups:
|
|
fp16_params = []
|
|
fp32_master_params = []
|
|
fp32_params = []
|
|
# For all the parameters in this group:
|
|
for i, param in enumerate(param_group['params']):
|
|
if param.requires_grad:
|
|
# float16 params:
|
|
if param.type() in ['torch.cuda.HalfTensor']:
|
|
fp16_params.append(param)
|
|
|
|
# Create a fp32 copy
|
|
fp32_param = param.detach().clone().float()
|
|
# Copy tensor model parallel attributes.
|
|
copy_tensor_parallel_attributes(param, fp32_param)
|
|
|
|
# Replace the optimizer params with the new fp32 copy.
|
|
param_group['params'][i] = fp32_param
|
|
fp32_master_params.append(fp32_param)
|
|
|
|
# Reset existing state dict key to the new main param.
|
|
if param in self._optimizer.state:
|
|
self._optimizer.state[fp32_param] = self._optimizer.state.pop(param)
|
|
|
|
# fp32 params.
|
|
elif param.type() == 'torch.cuda.FloatTensor':
|
|
fp32_params.append(param)
|
|
else:
|
|
raise TypeError('Expected parameter of type torch.cuda.FloatTensor '
|
|
f'or torch.cuda.HalfTensor, but got {param.type()}')
|
|
|
|
self._fp16_param_groups.append(fp16_params)
|
|
self._fp32_master_param_groups.append(fp32_master_params)
|
|
self._fp32_param_groups.append(fp32_params)
|
|
|
|
# Leverage state_dict() and load_state_dict() to
|
|
# recast preexisting per-param state tensors
|
|
self._optimizer.load_state_dict(self._optimizer.state_dict())
|
|
|
|
# log config
|
|
self._logger = get_dist_logger()
|
|
if verbose:
|
|
self._logger.info(
|
|
f"\n========= FP16 Optimizer Config =========\n"
|
|
f"Optimizer: {optimizer.__class__.__name__}\n"
|
|
f"clip_grad_norm = {clip_grad_norm}\n"
|
|
f"grad_scaler = {self._grad_scaler.__class__.__name__}"
|
|
f"==========================================",
|
|
ranks=[0])
|
|
|
|
@property
|
|
def grad_scaler(self):
|
|
return self._grad_scaler
|
|
|
|
@property
|
|
def loss_scale(self):
|
|
return self._grad_scaler.scale
|
|
|
|
@property
|
|
def optimizer(self):
|
|
return self._optimizer
|
|
|
|
@property
|
|
def defaults(self):
|
|
return self._defaults
|
|
|
|
def _check_overflow(self):
|
|
# clear previous overflow record
|
|
self._found_overflow.fill_(0.0)
|
|
|
|
# check for overflow
|
|
for group in self._optimizer.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is not None and has_inf_or_nan(p.grad):
|
|
self._found_overflow.fill_(1.0)
|
|
break
|
|
|
|
# all-reduce across dp group
|
|
if self._dp_process_group:
|
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_process_group)
|
|
|
|
# all-reduce over model parallel group
|
|
if self._mp_process_group:
|
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_process_group)
|
|
|
|
return self._found_overflow.item() > 0
|
|
|
|
def zero_grad(self, set_to_none=True):
|
|
# set_to_none = True can save some memory space
|
|
for param_group in self._optimizer.param_groups:
|
|
zero_gard_by_list(param_group['params'], set_to_none=set_to_none)
|
|
|
|
def _get_fp32_param_groups_to_update(self):
|
|
return self._fp32_master_param_groups + self._fp32_param_groups
|
|
|
|
def _unscale_grads(self):
|
|
for group in self._get_fp32_param_groups_to_update():
|
|
for p in group:
|
|
if p.grad is not None:
|
|
p.grad.data.div_(self.loss_scale)
|
|
|
|
def _assign_grad_to_fp32_master_param(self):
|
|
# This only needs to be done for the float16 group.
|
|
for fp16_param_group, fp32_master_param_group in zip(self._fp16_param_groups, self._fp32_master_param_groups):
|
|
for fp16_param, fp32_param in zip(fp16_param_group, fp32_master_param_group):
|
|
if fp16_param.grad is not None:
|
|
fp32_param.grad = fp16_param.grad.float()
|
|
# clear unneeded grad on fp16 param
|
|
fp16_param.grad = None
|
|
|
|
def _update_fp16_param_from_fp32_param(self):
|
|
fp16_param_data = []
|
|
fp32_master_param_data = []
|
|
for fp16_group, fp32_group in zip(self._fp16_param_groups, self._fp32_master_param_groups):
|
|
for fp16_param, fp32_param in zip(fp16_group, fp32_group):
|
|
fp16_param_data.append(fp16_param.data)
|
|
fp32_master_param_data.append(fp32_param.data)
|
|
_multi_tensor_copy_this_to_that(this=fp32_master_param_data,
|
|
that=fp16_param_data,
|
|
overflow_buf=self._dummy_overflow_buf)
|
|
|
|
def step(self):
|
|
# Copy gradients from model params to main params.
|
|
self._assign_grad_to_fp32_master_param()
|
|
self._unscale_grads()
|
|
|
|
overflow = self._check_overflow()
|
|
self._grad_scaler.update(overflow)
|
|
|
|
if overflow:
|
|
self.zero_grad()
|
|
return False, None
|
|
|
|
# Clip the main gradients.
|
|
grad_norm = None
|
|
if self._clip_grad_max_norm > 0.0:
|
|
grad_norm = self.clip_grad_norm(self._clip_grad_max_norm)
|
|
|
|
# Step the optimizer.
|
|
self._optimizer.step()
|
|
|
|
# Update params from main params.
|
|
self._update_fp16_param_from_fp32_param()
|
|
|
|
# Successful update.
|
|
return True, grad_norm
|
|
|
|
def backward(self, loss):
|
|
scaled_loss = loss * self.grad_scaler.scale
|
|
scaled_loss.backward()
|
|
|
|
def state_dict(self):
|
|
state_dict = {}
|
|
state_dict['optimizer'] = self._optimizer.state_dict()
|
|
if self.grad_scaler:
|
|
state_dict['grad_scaler'] = self.grad_scaler.state_dict()
|
|
state_dict['fp32_master_param_groups'] = self._fp32_master_param_groups
|
|
return state_dict
|
|
|
|
def load_state_dict(self, state_dict):
|
|
# Optimizer.
|
|
self._optimizer.load_state_dict(state_dict['optimizer'])
|
|
|
|
# Grad scaler.
|
|
if 'grad_scaler' in state_dict:
|
|
self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
|
|
|
|
# Copy data for the main params.
|
|
if 'fp32_master_param_groups' in state_dict:
|
|
for current_group, ckpt_group in zip(self._fp32_master_param_groups,
|
|
state_dict['fp32_master_param_groups']):
|
|
for current_param, ckpt_param in zip(current_group, ckpt_group):
|
|
current_param.data.copy_(ckpt_param.data)
|
|
|
|
def clip_grad_norm(self, clip_grad):
|
|
params = []
|
|
for param_group in self._optimizer.param_groups:
|
|
for param in param_group['params']:
|
|
params.append(param)
|
|
return clip_grad_norm_fp32(params, clip_grad)
|
|
|
|
# Promote state so it can be retrieved or set via
|
|
# "optimizer_instance.state"
|
|
def _get_state(self):
|
|
return self._optimizer.state
|
|
|
|
def _set_state(self, value):
|
|
self._optimizer.state = value
|
|
|
|
state = property(_get_state, _set_state)
|
|
|
|
# Promote param_groups so it can be retrieved or set via
|
|
# "optimizer_instance.param_groups"
|
|
# (for example, to adjust the learning rate)
|
|
def _get_param_groups(self):
|
|
return self._optimizer.param_groups
|
|
|
|
def _set_param_groups(self, value):
|
|
self._optimizer.param_groups = value
|
|
|
|
param_groups = property(_get_param_groups, _set_param_groups)
|