You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/tutorial/auto_parallel/auto_ckpt_solver_test.py

90 lines
3.8 KiB

import time
from argparse import ArgumentParser
from functools import partial
import matplotlib.pyplot as plt
import torch
import torch.multiprocessing as mp
import torchvision.models as tm
from bench_utils import GPTLMLoss, bench_rotor, data_gen_gpt2, data_gen_resnet, gpt2_medium
import colossalai
from colossalai.auto_parallel.checkpoint import CheckpointSolverRotor
from colossalai.fx import metainfo_trace, symbolic_trace
from colossalai.utils import free_port
def _benchmark(rank, world_size, port, args):
"""
Auto activation checkpoint solver benchmark, we provide benchmark on two models: gpt2_medium and resnet50.
The benchmark will sample in a range of memory budget for each model and output the benchmark summary and
data visualization of peak memory vs. budget memory and relative step time vs. peak memory.
"""
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
if args.model == 'resnet50':
model = tm.resnet50()
data_gen = partial(data_gen_resnet, batch_size=128, shape=(3, 224, 224))
gm = symbolic_trace(model)
gm = metainfo_trace(gm, torch.empty(128, 3, 224, 224, device='meta'))
loss = torch.nn.CrossEntropyLoss()
else:
model = gpt2_medium()
data_gen = partial(data_gen_gpt2, batch_size=8, seq_len=1024, vocab_size=50257)
data, mask = data_gen(device='meta')[0]
gm = symbolic_trace(model, meta_args={'input_ids': data, 'attention_mask': mask})
gm = metainfo_trace(gm, data, mask)
loss = GPTLMLoss()
free_memory = 11000 * 1024**2 if args.model == 'resnet50' else 56000 * 1024**2
start_factor = 4 if args.model == 'resnet50' else 10
# trace and benchmark
budgets, peak_hist, step_hist = bench_rotor(gm,
loss,
data_gen,
num_steps=5,
sample_points=15,
free_memory=free_memory,
start_factor=start_factor)
# print summary
print("==============benchmark summary==============")
for budget, peak, step in zip(budgets, peak_hist, step_hist):
print(f'memory budget: {budget:.3f} MB, peak memory: {peak:.3f} MB, step time: {step:.3f} MS')
# plot valid results
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
valid_idx = step_hist.index(next(step for step in step_hist if step != float("inf")))
# plot peak memory vs. budget memory
axs[0].plot(budgets[valid_idx:], peak_hist[valid_idx:])
axs[0].plot([budgets[valid_idx], budgets[-1]], [budgets[valid_idx], budgets[-1]], linestyle='--')
axs[0].set_xlabel("Budget Memory (MB)")
axs[0].set_ylabel("Peak Memory (MB)")
axs[0].set_title("Peak Memory vs. Budget Memory")
# plot relative step time vs. budget memory
axs[1].plot(peak_hist[valid_idx:], [step_time / step_hist[-1] for step_time in step_hist[valid_idx:]])
axs[1].plot([peak_hist[valid_idx], peak_hist[-1]], [1.0, 1.0], linestyle='--')
axs[1].set_xlabel("Peak Memory (MB)")
axs[1].set_ylabel("Relative Step Time")
axs[1].set_title("Step Time vs. Peak Memory")
axs[1].set_ylim(0.8, 1.5)
# save plot
fig.savefig(f"{args.model}_benchmark.png")
def auto_activation_checkpoint_benchmark(args):
world_size = 1
run_func_module = partial(_benchmark, world_size=world_size, port=free_port(), args=args)
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == "__main__":
parser = ArgumentParser("Auto Activation Checkpoint Solver Benchmark")
parser.add_argument("--model", type=str, default='gpt2', choices=['gpt2', 'resnet50'])
args = parser.parse_args()
auto_activation_checkpoint_benchmark(args)