ColossalAI/tests/test_shardformer/test_module/test_slicer.py

79 lines
4.1 KiB
Python

import pytest
import torch
import torch.nn.functional as F
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.policies.basepolicy import Col_Layer, Layer, Row_Layer
from colossalai.shardformer.shard.shard_config import ShardConfig
from colossalai.shardformer.shard.slicer import Slicer
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),)
def check_slicer(rank, world_size, port, in_feature, out_feature):
disable_existing_loggers()
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, port=port, host='localhost', backend='nccl')
# initialize slicer
shardconfig = ShardConfig(rank=rank, world_size=world_size)
slicer = Slicer(shardconfig)
# initialize test data
weight = torch.randn(in_feature, out_feature)
bias = torch.randn(out_feature)
policy_layer_cls_list = [Layer, Col_Layer, Row_Layer]
n_cast_list = [None, 2, 3, 4]
# weight and bias
for n_cast in n_cast_list:
sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Layer, n_cast=n_cast)
expected_sliced_weight = weight
expected_sliced_bias = bias
assert torch.equal(
sliced_weight, expected_sliced_weight
), f"In Layer case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}"
assert torch.equal(
sliced_bias, expected_sliced_bias
), f"In Layer case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}"
sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Col_Layer, n_cast=n_cast)
if (n_cast is None):
expected_sliced_weight = weight.chunk(world_size, dim=0)[rank]
expected_sliced_bias = bias.chunk(world_size)[rank]
else:
chunks = weight.chunk(world_size * n_cast, dim=0)
expected_sliced_weight = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)], dim=0)
chunks = bias.chunk(world_size * n_cast, dim=0)
expected_sliced_bias = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)])
assert torch.equal(
sliced_weight, expected_sliced_weight
), f"In Col_Layer {n_cast} cast case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}"
assert torch.equal(
sliced_bias, expected_sliced_bias
), f"In Col_Layer {n_cast} cast case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_bias}\nexpected:{expected_sliced_bias}"
sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Row_Layer, n_cast=n_cast)
if (n_cast is None):
expected_sliced_weight = weight.chunk(world_size, dim=1)[rank]
expected_sliced_bias = bias
else:
chunks = weight.chunk(world_size * n_cast, dim=1)
expected_sliced_weight = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)], dim=1)
expected_sliced_bias = bias
assert torch.equal(
sliced_weight, expected_sliced_weight
), f"In Row_Layer {n_cast} cast case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}"
assert torch.equal(
sliced_bias, expected_sliced_bias
), f"In Row_Layer {n_cast} cast case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}"
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_slicer():
args = dict(in_feature=24, out_feature=48)
spawn(check_slicer, nprocs=2, in_feature=args['in_feature'], out_feature=args['out_feature'])
if __name__ == '__main__':
test_slicer()