import pytest import torch import torch.nn.functional as F import colossalai from colossalai.logging import disable_existing_loggers from colossalai.shardformer.policies.basepolicy import Col_Layer, Layer, Row_Layer from colossalai.shardformer.shard.shard_config import ShardConfig from colossalai.shardformer.shard.slicer import Slicer from colossalai.testing import rerun_if_address_is_in_use, spawn CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=2, mode='1d')),) def check_slicer(rank, world_size, port, in_feature, out_feature): disable_existing_loggers() colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, port=port, host='localhost', backend='nccl') # initialize slicer shardconfig = ShardConfig(rank=rank, world_size=world_size) slicer = Slicer(shardconfig) # initialize test data weight = torch.randn(in_feature, out_feature) bias = torch.randn(out_feature) policy_layer_cls_list = [Layer, Col_Layer, Row_Layer] n_cast_list = [None, 2, 3, 4] # weight and bias for n_cast in n_cast_list: sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Layer, n_cast=n_cast) expected_sliced_weight = weight expected_sliced_bias = bias assert torch.equal( sliced_weight, expected_sliced_weight ), f"In Layer case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}" assert torch.equal( sliced_bias, expected_sliced_bias ), f"In Layer case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}" sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Col_Layer, n_cast=n_cast) if (n_cast is None): expected_sliced_weight = weight.chunk(world_size, dim=0)[rank] expected_sliced_bias = bias.chunk(world_size)[rank] else: chunks = weight.chunk(world_size * n_cast, dim=0) expected_sliced_weight = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)], dim=0) chunks = bias.chunk(world_size * n_cast, dim=0) expected_sliced_bias = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)]) assert torch.equal( sliced_weight, expected_sliced_weight ), f"In Col_Layer {n_cast} cast case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}" assert torch.equal( sliced_bias, expected_sliced_bias ), f"In Col_Layer {n_cast} cast case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_bias}\nexpected:{expected_sliced_bias}" sliced_weight, sliced_bias = slicer.slice_weight_bias(weight, bias, policy_layer_cls=Row_Layer, n_cast=n_cast) if (n_cast is None): expected_sliced_weight = weight.chunk(world_size, dim=1)[rank] expected_sliced_bias = bias else: chunks = weight.chunk(world_size * n_cast, dim=1) expected_sliced_weight = torch.cat([chunks[i] for i in range(rank, n_cast * world_size, world_size)], dim=1) expected_sliced_bias = bias assert torch.equal( sliced_weight, expected_sliced_weight ), f"In Row_Layer {n_cast} cast case, weight: sliced_weight is not equal to expected_sliced_weight\norg:{weight}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}" assert torch.equal( sliced_bias, expected_sliced_bias ), f"In Row_Layer {n_cast} cast case, bias: sliced_bias is not equal to expected_sliced_bias\norg:{bias}\nsliced:{sliced_weight}\nexpected:{expected_sliced_weight}" @pytest.mark.dist @rerun_if_address_is_in_use() def test_slicer(): args = dict(in_feature=24, out_feature=48) spawn(check_slicer, nprocs=2, in_feature=args['in_feature'], out_feature=args['out_feature']) if __name__ == '__main__': test_slicer()