ColossalAI/examples/language/openmoe/benchmark/utils.py

127 lines
4.1 KiB
Python

from time import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from torch import Tensor
from colossalai.logging import DistributedLogger
def print_model_numel(logger: DistributedLogger, model: nn.Module) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = "Model param count: "
model_param = sum(p.numel() for p in model.parameters() if p.requires_grad)
if model_param >= B:
outputs += f"{model_param / B:.2f} B\n"
elif model_param >= M:
outputs += f"{model_param / M:.2f} M\n"
elif model_param >= K:
outputs += f"{model_param / K:.2f} K\n"
else:
outputs += f"{model_param}\n"
logger.info(outputs, ranks=[0])
def get_model_numel(model: nn.Module) -> None:
model_param = sum(p.numel() for p in model.parameters() if p.requires_grad)
return model_param
def divide(x: float, y: float) -> float:
if y == 0:
return float("inf")
elif y == float("inf"):
return float("nan")
return x / y
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=torch.cuda.current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
def start(self) -> None:
self.start_time = time()
def end(self) -> None:
assert self.start_time is not None
self.duration += time() - self.start_time
self.start_time = None
def reset(self) -> None:
self.duration = 0.0
class PerformanceEvaluator:
"""
Callback for valuate the performance of the model.
Args:
actor_num_params: The number of parameters of the actor model.
critic_num_params: The number of parameters of the critic model.
initial_model_num_params: The number of parameters of the initial model.
reward_model_num_params: The number of parameters of the reward model.
enable_grad_checkpoint: Whether to enable gradient checkpointing.
ignore_episodes: The number of episodes to ignore when calculating the performance.
"""
def __init__(
self,
model_numel: int,
enable_grad_checkpoint: bool = False,
ignore_steps: int = 0,
dp_world_size: Optional[int] = None,
) -> None:
self.model_numel = model_numel
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_steps = ignore_steps
self.dp_world_size = dp_world_size
self.world_size = dist.get_world_size()
self.disable: bool = False
self.timer = Timer()
self.num_samples: int = 0
self.flop: int = 0
def on_step_start(self, step: int) -> None:
self.disable = self.ignore_steps > 0 and step < self.ignore_steps
if self.disable:
return
torch.cuda.synchronize()
self.timer.start()
def on_step_end(self, input_ids: Tensor, **kwargs) -> None:
if self.disable:
return
torch.cuda.synchronize()
self.timer.end()
batch_size, seq_len = input_ids.shape
self.num_samples += batch_size
self.flop += (batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint)))
def on_fit_end(self) -> None:
avg_duration = all_reduce_mean(self.timer.duration, self.world_size)
avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12)
mp_world_size = self.world_size // self.dp_world_size
avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size
if dist.get_rank() == 0:
print(
f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop: {self.flop}, avg_duration: {avg_duration}, "
f"avg_throughput: {avg_throughput}")
print(f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}")