from time import time from typing import Optional import torch import torch.distributed as dist import torch.nn as nn from torch import Tensor from colossalai.logging import DistributedLogger def print_model_numel(logger: DistributedLogger, model: nn.Module) -> None: B = 1024**3 M = 1024**2 K = 1024 outputs = "Model param count: " model_param = sum(p.numel() for p in model.parameters() if p.requires_grad) if model_param >= B: outputs += f"{model_param / B:.2f} B\n" elif model_param >= M: outputs += f"{model_param / M:.2f} M\n" elif model_param >= K: outputs += f"{model_param / K:.2f} K\n" else: outputs += f"{model_param}\n" logger.info(outputs, ranks=[0]) def get_model_numel(model: nn.Module) -> None: model_param = sum(p.numel() for p in model.parameters() if p.requires_grad) return model_param def divide(x: float, y: float) -> float: if y == 0: return float("inf") elif y == float("inf"): return float("nan") return x / y @torch.no_grad() def all_reduce_mean(x: float, world_size: int) -> float: if world_size == 1: return x tensor = torch.tensor([x], device=torch.cuda.current_device()) dist.all_reduce(tensor) tensor = tensor / world_size return tensor.item() class Timer: def __init__(self) -> None: self.start_time: Optional[float] = None self.duration: float = 0.0 def start(self) -> None: self.start_time = time() def end(self) -> None: assert self.start_time is not None self.duration += time() - self.start_time self.start_time = None def reset(self) -> None: self.duration = 0.0 class PerformanceEvaluator: """ Callback for valuate the performance of the model. Args: actor_num_params: The number of parameters of the actor model. critic_num_params: The number of parameters of the critic model. initial_model_num_params: The number of parameters of the initial model. reward_model_num_params: The number of parameters of the reward model. enable_grad_checkpoint: Whether to enable gradient checkpointing. ignore_episodes: The number of episodes to ignore when calculating the performance. """ def __init__( self, model_numel: int, enable_grad_checkpoint: bool = False, ignore_steps: int = 0, dp_world_size: Optional[int] = None, ) -> None: self.model_numel = model_numel self.enable_grad_checkpoint = enable_grad_checkpoint self.ignore_steps = ignore_steps self.dp_world_size = dp_world_size self.world_size = dist.get_world_size() self.disable: bool = False self.timer = Timer() self.num_samples: int = 0 self.flop: int = 0 def on_step_start(self, step: int) -> None: self.disable = self.ignore_steps > 0 and step < self.ignore_steps if self.disable: return torch.cuda.synchronize() self.timer.start() def on_step_end(self, input_ids: Tensor, **kwargs) -> None: if self.disable: return torch.cuda.synchronize() self.timer.end() batch_size, seq_len = input_ids.shape self.num_samples += batch_size self.flop += (batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint))) def on_fit_end(self) -> None: avg_duration = all_reduce_mean(self.timer.duration, self.world_size) avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12) mp_world_size = self.world_size // self.dp_world_size avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size if dist.get_rank() == 0: print( f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop: {self.flop}, avg_duration: {avg_duration}, " f"avg_throughput: {avg_throughput}") print(f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}")